22 resultados para Andreae, Jakob, 1528-1590.


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The wavelength dependent transmission performance of adaptively modulated optical OFDM (AMOOFDM) signals is investigated, for the first time, over optical amplification- and chromatic dispersion compensation-free IMDD SMF systems using semiconductor optical amplifiers (SOAs) as intensity modulators. A theoretical SOA model describing both optical gain saturation and gain spectral dynamics is developed, based on which optimum SOA operating conditions are identified for various wavelengths varying in a broad range of 1510 nm- 1590 nm. Results show that, SOA intensity modulators operating at the identified optimum conditions enable the realization of colourless AMOOFDM transmitters within the aforementioned wavelength window. Such transmitters are capable of supporting >30 Gb/s signal transmission over 60 km SMFs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Software importance keeps growing fast and consistently for many organizations. The growth of software functionality in manufactured products and the emergence of digital media, convergent spaces including digital content, software, and multi-channels to the market, are recent examples of organizational changes where software assumed a central position for the corporate strategy. This paper analyzes the alignment between strategic objectives and software development processes at software companies and proposes a methodology to ensure that development processes are aligned with the corporate capabilities required to exploit future market opportunities. The methodology includes the categorization of different software companies according to their core capabilities and the customization of the technology roadmapping technique for software companies. The research process included the realization of case studies and a survey. (c) 2006 PICMET.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Taper-free and vertically oriented Ge nanowires were grown on Si (111) substrates by chemical vapor deposition with Au nanoparticle catalysts. To achieve vertical nanowire growth on the highly lattice mismatched Si substrate, a thin Ge buffer layer was first deposited, and to achieve taper-free nanowire growth, a two-temperature process was employed. The two-temperature process consisted of a brief initial base growth step at high temperature followed by prolonged growth at lower temperature. Taper-free and defect-free Ge nanowires grew successfully even at 270 °C, which is 90 °C lower than the bulk eutectic temperature. The yield of vertical and taper-free nanowires is over 90%, comparable to that of vertical but tapered nanowires grown by the conventional one-temperature process. This method is of practical importance and can be reliably used to develop novel nanowire-based devices on relatively cheap Si substrates. Additionally, we observed that the activation energy of Ge nanowire growth by the two-temperature process is dependent on Au nanoparticle size. The low activation energy (∼5 kcal/mol) for 30 and 50 nm diameter Au nanoparticles suggests that the decomposition of gaseous species on the catalytic Au surface is a rate-limiting step. A higher activation energy (∼14 kcal/mol) was determined for 100 nm diameter Au nanoparticles which suggests that larger Au nanoparticles are partially solidified and that growth kinetics become the rate-limiting step. © 2011 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report straight and vertically aligned defect-free GaAs nanowires grown on Si(111) substrates by metal-organic chemical vapor deposition. By deposition of thin GaAs buffer layers on Si substrates, these nanowires could be grown on the buffer layers with much less stringent conditions as otherwise imposed by epitaxy of III-V compounds on Si. Also, crystal-defect-free GaAs nanowires were grown by using either a two-temperature growth mode consisting of a short initial nucleation step under higher temperature followed by subsequent growth under lower temperature or a rapid growth rate mode with high source flow rate. These two growth modes not only eliminated planar crystallographic defects but also significantly reduced tapering. Core-shell GaAs-AlGaAs nanowires grown by the two-temperature growth mode showed improved optical properties with strong photoluminescence and long carrier life times. © 2011 American Chemical Society.