27 resultados para Al2O3


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alumina ceramic, Al2O3, presents a challenge to laser micro-structuring due to its neglible linear absorption coefficient in the optical region coupled with its physical properties such as extremely high melting point and high thermal conductivity. In this work, we demonstrate clean micro-structuring of alumina using NIR (λ=775 nm) ultrafast optical pulses with 180 fs duration at 1kHz repetition rate. Sub-picosecond pulses can minimise thermal effects along with collateral damage when processing conditions are optimised, consequently, observed edge quality is excellent in this regime. We present results of changing micro-structure and morphology during ultrafast processing along with measured ablation rates and characteristics of developing surface relief. Initial crystalline phase (alpha Al2O3) is unaltered by femtosecond processing. Multi-pulse ablation threshold fluence Fth, ∼ 1.1 Jcm-2 and at low fluence ∼ 3 Jcm -2, independent of machined depth, there appears to remain a ∼ 2 μm thick rapidly re-melted layer. On the other hand, micro-structuring at high fluence F ∼ 21 Jcm-2 shows no evidence of melting and the machined surface is covered with a fine layer of debris, loosely attached. The nature of debris produced by femtosecond ablation has been investigated and consists mainly of alumina nanoparticles with diameters from 20 nm to 1 micron with average diameter ∼ 300 nm. Electron diffraction shows these particles to be essentially single crystal in nature. By developing a holographic technique, we have demonstrated periodic micrometer level structuring on polished samples of this extremely hard material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact response of laminated composites consisting of alternate layers of AI ahoy foam and Al2O3 was studied experimentally in low and intermediate velocity regimes. Low velocity impacts (1.2-2.8 m s(-1)) were conducted using an instrumented falling weight apparatus and were compared with static indentation tests (0.2 x 10(-4) m s(-1)). Intermediate velocity impacts were carried out by means of both Hopkinson bar (60 m s(-1)) and gas gun (200 m s(-1)) tests, Post-impact damage was assessed using X-ray radiography and microscopy, It was found that there is good correlation between low velocity impact and quasi-static responses. In both cases, penetration of the layered targets resulted in the formation of a distinctive plug. Increasing impact velocity (intermediate velocity range) snitched the penetration mode from plugging to fragmentation, giving rise to an increase in the absorbed energy. In this range, impacts led to localisation of damage in the region under the projectile, Furthermore, a comparison has been made between the penetration response of foam laminates and dense metal laminates of equivalent areal density. Preliminary results suggest that the dense metal laminates are superseded by the foam laminates on an energy absorption basis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our group recently reproduced the water-assisted growth method, so-called "SuperGrowth", of millimeter-thick single-walled carbon nanotube (SWNT) forests by using C2H4/H2/H2O/Ar reactant gas and Fe/Al2O3, catalyst. In this current work, a parametric study was carried out on both reaction and catalyst conditions. Results revealed that a thin Fe catalyst layer (about 0.5 nm) yielded rapid growth of SWNTs only when supported on Al2O3, and that Al2O3 support enhanced the activity of Fe, Co, and Ni catalysts. The growth window for the rapid SWNT growth was narrow, however. Optimum amount of added H2O increased the SWNT growth rate but further addition of H2O degraded both the SWNT growth rate and quality. Addition of H2 was also essential for rapid SWNT growth, but again, further addition decreased both the SWNT growth rate and quality. Because Al2O3 catalyzes hydrocarbon reforming, Al2O3 support possibly enhances the SWNT growth rate by supplying the carbon source to the catalyst nanoparticles. The origin of the narrow window for rapid SWNT growth is also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical looping combustion (CLC) uses a metal oxide (the oxygen carrier) to provide oxygen for the combustion of a fuel and gives an inherent separation of pure CO2 with minimal energy penalty. In solid-fuel CLC, volatile matter will interact with oxygen carriers. Here, the interaction between iron-based oxygen carriers and a volatile hydrocarbon (n-heptane) was investigated in both a laboratory-scale fluidised bed and a thermogravimetric analyser (TGA). Experiments were undertaken to characterise the thermal decomposition of the n-heptane occurring in the presence and in the absence of the oxygen carrier. In a bed of inert particles, carbon deposition increased with temperature and acetylene appeared as a possible precursor. For a bed of carrier consisting of pure Fe2O3, carbon deposition occurred once the Fe2O3 was fully reduced to Fe. When the Fe2O3 was doped with 10 mol % Al2O3 (Fe90Al), deposition started when the carrier was reduced to a mixture of Fe and FeAl2O4, the latter being very unreactive. Furthermore, when pure Fe2O3 was fully reduced to Fe, agglomeration of the fluidised bed occurred. However, Fe90Al did not give agglomeration even after extended reduction. The results suggest that Fe90Al is promising for the CLC of solid fuels. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present planar mesa termination structure with high k dielectric Al2O3 for high-voltage diamond Schottky barrier diode. Analysis, design, and optimization are carried out by simulations using finite element technology computer-aided design (TCAD) Sentaurus Device software. The performances of planar mesa termination structure are compared to those of conventional field plate termination structure. It is found that optimum geometry of planar mesa terminated diode requires shorter metal plate extension (1/3 of the field plate terminated diode). Consequently, planar mesa terminated diode can be designed with bigger Schottky contact to increase its current carrying capability. Breakdown performance of field plate termination structure is limited at 1480 V due to peak electric field at the corner of Schottky contact (no oxide breakdown occurs). In contrast, peak electric field in planar mesa termination structure only occurs in the field oxide such that its breakdown performance is highly dependent on the oxide material. Due to Al2O3 breakdown, planar mesa termination structure suffers premature breakdown at 1440 V. Considering no oxide breakdown occurs, planar mesa termination structure can realize higher breakdown voltage of 1751 V. Therefore, to fully realize the potential of planar mesa terminated diode, it is important to choose suitable high k dielectric material with sufficient breakdown electric field for the field oxide. © 2013 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon diffusion barriers are introduced as a general and simple method to prevent premature carbon dissolution and thereby to significantly improve graphene formation from the catalytic transformation of solid carbon sources. A thin Al2O3 barrier inserted into an amorphous-C/Ni bilayer stack is demonstrated to enable growth of uniform monolayer graphene at 600 °C with domain sizes exceeding 50 μm, and an average Raman D/G ratio of <0.07. A detailed growth rationale is established via in situ measurements, relevant to solid-state growth of a wide range of layered materials, as well as layer-by-layer control in these systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of III-nitride-based light-emitting diodes (LEDs) is now widespread in applications such as indicator lamps, display panels, backlighting for liquid-crystal display TVs and computer screens, traffic lights, etc. To meet the huge market demand and lower the manufacturing cost, the LED industry is moving fast from 2 inch to 4 inch and recently to 6 inch wafer sizes. Although Al2O3 (sapphire) and SiC remain the dominant substrate materials for the epitaxy of nitride LEDs, the use of large Si substrates attracts great interest because Si wafers are readily available in large diameters at low cost. In addition, such wafers are compatible with existing processing lines for 6 inch and larger wafers commonly used in the electronics industry. During the last decade, much exciting progress has been achieved in improving the performance of GaN-on-Si devices. In this contribution, the status and prospects of III-nitride optoelectronics grown on Si substrates are reviewed. The issues involved in the growth of GaN-based LED structures on Si and possible solutions are outlined, together with a brief introduction to some novel in situ and ex situ monitoring/characterization tools, which are especially useful for the growth of GaN-on-Si structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various packed beds of copper-based oxygen carriers (CuO on Al2O3) were tested over 100 cycles of low temperature (673K) Chemical Looping Combustion (CLC) with H2 as the fuel gas. The oxygen carriers were uniformly mixed with alumina (Al2O3) in order to investigate the level of separation necessary to prevent agglomeration. It was found that a mass ratio of 1:6 oxygen carrier to alumina gave the best performance in terms of stable, repeating hydrogen breakthrough curves over 100 cycles. In order to quantify the average separation achieved in the mixed packed beds, two sphere-packing models were developed. The hexagonal close-packing model assumed a uniform spherical packing structure, and based the separation calculations on a hypergeometric probability distribution. The more computationally intensive full-scale model used discrete element modelling to simulate random packing arrangements governed by gravity and contact dynamics. Both models predicted that average 'nearest neighbour' particle separation drops to near zero for oxygen carrier mass fractions of x≥0.25. For the packed bed systems studied, agglomeration was observed when the mass fraction of oxygen carrier was above this threshold. © 2013 Elsevier B.V.