166 resultados para Aircraft exhaust emissions.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A previously developed Stochastic Reactor Model (SRM) is used to simulate combustion in a four cylinder in-line four-stroke naturally aspirated direct injection Spark Ignition (SI) engine modified to run in Homogeneous Charge Compression Ignition (HCCI) mode with a Negative Valve Overlap (NVO). A portion of the fuel is injected during NVO to increase the cylinder temperature and enable HCCI combustion at a compression ratio of 12:1. The model is coupled with GT-Power, a one-dimensional engine simulation tool used for the open valve portion of the engine cycle. The SRM is used to model in-cylinder mixing, heat transfer and chemistry during the NVO and main combustion. Direct injection is simulated during NVO in order to predict heat release and internal Exhaust Gas Recycle (EGR) composition and mass. The NOx emissions and simulated pressure profiles match experimental data well, including the cyclic fluctuations. The model predicts combustion characteristics at different fuel split ratios and injection timings. The effect of fuel reforming on ignition timing is investigated along with the causes of cycle to cycle variations and unstable operation. A detailed flux analysis during NVO unearths interesting results regarding the effect of NOx on ignition timing compared with its effect during the main combustion. © 2009 SAE International.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Turbomachinery noise radiating into the rearward arc is an important problem. This noise is scattered by the trailing edges of the nacelle and the jet exhaust, and interacts with the shear layers between the external flow, bypass stream and jet, en route to the far field. In the past a range of relevant model problems involving semi-infinite cylinders have been solved. However, one limitation of these previous solutions is that they do not allow for the jet nozzle protruding a finite distance beyond the end of the nacelle (or in certain configurations being buried a finite distance upstream). With this in mind, we have used the matrix Wiener-Hopf technique to allow precisely this finite nacelle-jet nozzle separation to be included. We have previously reported results for the case of hard-walled ducts, which requires factorisation of a 2 × 2 matrix. In this paper we extend this work by allowing one of the duct walls, in this case the outer wall of the jet pipe, to be acoustically lined. This results in the need to factorise a 3 × 3 matrix, which is completed by use of a combination of pole-removal and Pad́e approximant techniques. Sample results are presented, investigating in particular the effects of exit plane stagger and liner impedance. Here we take the mean flow to be zero, but extension to nonzero Mach numbers in the core and bypass flow has also been completed. Copyright © 2009 by Nigel Peake & Ben Veitch.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the formation of soot in a Direct Injection Spark Ignition (DISI) engine is simulated using the Stochastic Reactor Model (SRM) engine code. Volume change, convective heat transfer, turbulent mixing, direct injection and flame propagation are accounted for. In order to simulate flame propagation, the cylinder is divided into an unburned, entrained and burned zone, with the rate of entrainment being governed by empirical equations but combustion modelled with chemical kinetics. The model contains a detailed chemical mechanism as well as a highly detailed soot formation model, however computation times are relatively short. The soot model provides information on the morphology and chemical composition of soot aggregates along with bulk quantities, including soot mass, number density, volume fraction and surface area. The model is first calibrated by simulating experimental data from a Gasoline Direct Injection (GDI) Spark Ignition (SI) engine. The model is then used to simulate experimental data from the literature, where the numbers, sizes and derived mass particulate emissions from a 1.83 L, 4-cylinder, 4 valve production DISI engine were examined. Experimental results from different injection and spark timings are compared with the model and the qualitative trends in aggregate size distribution and emissions match the exhaust gas measurements well. © 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador: