36 resultados para Agricola, Gnaeus Julius, 40-93.
Resumo:
We experimentally show that a hybrid-integrated Mach-Zehnder switch with a high performance gate profile allows retiming of optical signals with an accuracy of 500-700fs even if the input timing jitter is increased to 3ps. © 2004 Optical Society of America.
Resumo:
4 bps/Hz 40 Gb/s carrierless amplitude and phase (CAP) modulation is investigated for next-generation datacommunication links. The 40 Gb/s link achieves double the length of a conventional NRZ scheme, despite using a low-bandwidth source. © 2011 Optical Society of America.
Resumo:
Surface roughness noise is a potentially important contributor to airframe noise. In this paper, noise assessment due to surface roughness is performed for a conceptual Silent Aircraft design SAX-40 by means of a prediction model developed in previous theoretical work and validated experimentally. Estimates of three idealized test cases show that surface roughness could produce a significant noise level above that due to the trailing edge at high frequencies. Roughness height and roughness density are the two most significant parameters influencing surface roughness noise, with roughness height having the dominant effect. The ratio of roughness height to boundary-layer thickness is the relevant non-dimensional parameter and this decreases in the streamwise direction. The candidate surface roughness is selected for SAX-40 to meet an aggressive noise target and keep surface roughness noise at a negligible level. Copyright © 2008 by Yu Liu and Ann P. Dowling.
Resumo:
The University of Bristol is studying the feasibility of deploying 40 Gbit/s optical time division multiplexed (OTDM) transmission networks to support new telecommunication services such the Internet and video-on-demand systems. Among the functional blocks being considered in the project are the optical pulse sources, signal multiplexers and demultiplexers, clock recovery subsystems, signal detection and dispersion accommodation methods.
Resumo:
The performance of 40 Gbit/s optical time-division multiplexed (OTDM) communication systems can be severely limited when the extinction ratio of the optical pulses is low. This is a consequence of the coherent interference noise between individual OTDM channels. When taken alone, the multiple quantum well-distributed feedback laser+dispersion compensating fiber source exhibits a relatively poor extinction ratio which impairs its potential for use in a 40 Gbit/s OTDM system. However, with the addition of an electroabsorption modulator to suppress the pulse pedestals to better than 30 dB extinction, coherent interference noise is reduced, the bit-error-rate performance is greatly improved, and the source shows good potential for 40 Gbit/s OTDM communication.
Resumo:
Ultrafast self-switching of spectral-amplitude-encoded 40 Gb/s DPSK signals is demonstrated for the first time. Switching between 21 ports with 15nm maximum bin separation is achieved using a single correlator based on HNLF and an AWG. © 2009 IEEE.
Resumo:
A two-step viscoelastic spherical indentation method is proposed to compensate for 1) material relaxation and 2) sample thickness. In the first step, the indenter is moved at a constant speed and the reaction force is measured. In the second step, the indenter is held at a constant position and the relaxation response of the material is measured. Then the relaxation response is fit with a multi-exponential function which corresponds to a three-branch general Maxwell model. The relaxation modulus is derived by correcting the finite ramp time introduced in the first step. The proposed model takes into account the sample thickness, which is important for applications in which the sample thickness is less than ten times the indenter radius. The model is validated numerically by finite element simulations. Experiments are carried out on a 10% gelatin phantom and a chicken breast sample with the proposed method. The results for both the gelatin phantom and the chicken breast sample agree with the results obtained from a surface wave method. Both the finite element simulations and experimental results show improved elasticity estimations by incorporating the sample thickness into the model. The measured shear elasticities of the 10% gelatin sample are 6.79 and 6.93 kPa by the proposed finite indentation method at sample thickness of 40 and 20 mm, respectively. The elasticity of the same sample is estimated to be 6.53 kPa by the surface wave method. For the chicken breast sample, the shear elasticity is measured to be 4.51 and 5.17 kPa by the proposed indentation method at sample thickness of 40 and 20 mm, respectively. Its elasticity is measured by the surface wave method to be 4.14 kPa. © 2011 IEEE.