58 resultados para Advanced signal processing


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reviews the advances that flash lamp annealing brings to the processing of the most frequently used semiconductor materials, namely silicon and silicon carbide, thus enabling the fabrication of novel microelectronic structures and materials. The paper describes how such developments can translate into important practical applications leading to a wide range of technological benefits. Opportunities in ultra-shallow junction formation, heteroepitaxial growth of thin films of cubic silicon carbide on silicon, and crystallization of amorphous silicon films, along with the technical reasons for using flash lamp annealing are discussed in the context of state-of-the-art materials processing. © 2005 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of Bayes' Theorem to signal processing provides a consistent framework for proceeding from prior knowledge to a posterior inference conditioned on both the prior knowledge and the observed signal data. The first part of the lecture will illustrate how the Bayesian methodology can be applied to a variety of signal processing problems. The second part of the lecture will introduce the concept of Markov Chain Monte-Carlo (MCMC) methods which is an effective approach to overcoming many of the analytical and computational problems inherent in statistical inference. Such techniques are at the centre of the rapidly developing area of Bayesian signal processing which, with the continual increase in available computational power, is likely to provide the underlying framework for most signal processing applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The University of Cambridge is unusual in that its Department of Engineering is a single department which covers virtually all branches of engineering under one roof. In their first two years of study, our undergrads study the full breadth of engineering topics and then have to choose a specialization area for the final two years of study. Here we describe part of a course, given towards the end of their second year, which is designed to entice these students to specialize in signal processing and information engineering topics for years 3 and 4. The course is based around a photo editor and an image search application, and it requires no prior knowledge of the z-transform or of 2-dimensional signal processing. It does assume some knowledge of 1-D convolution and basic Fourier methods and some prior exposure to Matlab. The subject of this paper, the photo editor, is written in standard Matlab m-files which are fully visible to the students and help them to see how specific algorithms are implemented in detail. © 2011 IEEE.