25 resultados para 8-Channel Temperature Lance


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report selective tunnelling through a nanographene intermolecular tunnel junction achieved via scanning tunnelling microscope tip functionalization with hexa-peri-hexabenzocoronene (HBC) molecules. This leads to an offset in the alignment between the energy levels of the tip and the molecular assembly, resulting in the imaging of a variety of distinct charge density patterns in the HBC assembly, not attainable using a bare metallic tip. Different tunnelling channels can be selected by the application of an electric field in the tunnelling junction, which changes the condition of the HBC on the tip. Density functional theory-based calculations relate the imaged HBC patterns to the calculated molecular orbitals at certain energy levels. These patterns bear a close resemblance to the π-orbital states of the HBC molecule calculated at the relevant energy levels, mainly below the Fermi energy of HBC. This correlation demonstrates the ability of an HBC functionalized tip as regards accessing an energy range that is restricted to the usual operating bias range around the Fermi energy with a normal metallic tip at room temperature. Apart from relating to molecular orbitals, some patterns could also be described in association with the Clar aromatic sextet formula. Our observations may help pave the way towards the possibility of controlling charge transport between organic interfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The viscosity-temperature relation is determined for the water models SPC/E, TIP4P, TIP4P/Ew, and TIP4P/2005 by considering Poiseuille flow inside a nano-channel using molecular dynamics. The viscosity is determined by fitting the resulting velocity profile (away from the walls) to the continuum solution for a Newtonian fluid and then compared to experimental values. The results show that the TIP4P/2005 model gives the best prediction of the viscosity for the complete range of temperatures for liquid water, and thus it is the preferred water model of these considered here for simulations where the magnitude of viscosity is crucial. On the other hand, with the TIP4P model, the viscosity is severely underpredicted, and overall the model performed worst, whereas the SPC/E and TIP4P/Ew models perform moderately.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 4-channel polymeric optical bus module suitable for use in board-level interconnections is presented. Low-loss and low-crosstalk module performance is achieved, while -1 dB alignment tolerances better than ± 8 μm are demonstrated. © 2012 OSA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antenna-coupled field effect transistors have been developed as plasma-wave THz detectors in both InAs nanowire and graphene channel material. Room temperature operation has been achieved up to frequencies of 1.5 THz, with noise equivalent powers as low as a few 10-11 W/Hz1/2, and high-speed response. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we extract density of localized tail states from measurements of low temperature conductance in amorphous oxide transistors. At low temperatures, trap-limited conduction prevails, allowing extraction of the trapped carrier distribution with energy. Using a test device with a-InGaZnO channel layer, the extracted tail state energy and density at the conduction band minima are 20 meV and 2 × 10 19 cm -3 eV -1, respectively, which are consistent with values reported in the literature. Also, the field-effect mobility as a function of temperature from 77 K to 300 K is retrieved for different gate voltages, yielding the activation energy and the percolation threshold. © 2012 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel temperature and pressure sensor based on a single film bulk acoustic resonator (FBAR) is designed. This FBAR support two resonant modes, which response opposite to the change of temperature. By sealed the back cavity of a back-trench membrane type FBAR with silicon wafer, an on-chip single FBAR sensor suitable for measuring temperature and pressure simultaneously is proposed. For unsealed device, the experimental results show that the first resonant mode has a temperature coefficient of frequency (TCF) of 69.5ppm/K, and the TCF of the second mode is -8.1ppm/K. After sealed the back trench, it can be used as a pressure sensor, the pressure coefficient of frequency (PCF) for the two resonant mode is -17.4ppm/kPa and -6.1 ppm/kPa respectively, both of them being more sensitive than other existing pressure sensors. © 2013 Trans Tech Publications Ltd, Switzerland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 4-channel polymeric optical bus module suitable for use in board-levelinterconnections is presented. Low-loss and low-crosstalk module performance is achieved, while-1 dB alignment tolerances better than ± 8 μm are demonstrated. © OSA 2012.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antenna-coupled field effect transistors have been developed as plasma-wave THz detectors in both InAs nanowire and graphene channel materials. Room temperature operation has been achieved up to 3 THz, with noise equivalent power levels < 10-10 W/Hz1/2, and high-speed response already suitable for large area THz imaging applications. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate automatic operation of a cooler-less tunable-laser based WDM-PON system. Using a pilot-tone based overhead channel and centralized wavelength locking scheme, 1 Gb/s and 10 Gb/s data transmission is demonstrated in a multi-user set-up. © 2013 Optical Society of America.