19 resultados para 670700 Industrial Chemicals and Related Products


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to propose a novel reference framework that can be used to study how different kinds of innovation can result in better business performance and how external factors can influence both the firm's capacity to innovate and innovation itself. The value of the framework is demonstrated as it is applied in an exploratory study of the perceptions of public policy makers and managers from two European regions - the Veneto Region in Italy and the East of England in the UK. Amongst other things, the data gathered suggest that managers are generally less convinced than public policy makers, that the innovativeness of a firm is affected by factors over which policy makers have some control. This finding poses the question "what, if any, role can public policy makers play in enhancing a company's competitiveness by enabling it to become more innovative?".

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reaction between MgO and microsilica has been studied by many researchers, who confirmed the formation of magnesium silicate hydrate. The blend was reported to have the potential as a novel material for construction and environment purposes. However, the characteristics of MgO vary significantly, e.g., reactivity and purity, which would have an effect on the hydration process of MgO-silica blend. This paper investigated the strength and hydration products of reactive MgO and silica blend at room temperature up to 90 days. The existence of magnesium silicate hydrate after 7 days' curing was confirmed with the help of infrared spectroscopy, thermogravimetric analysis and X-ray diffraction. The microstructural and elemental analysis of the resulting magnesium silicate hydrate was conducted using scanning electron microscopy and energy dispersive spectroscopy. In addition, the effect of characteristics of MgO on the hydration process was discussed. It was found that the synthesis of magnesium silicate hydrate was highly dependent on the reactivity of the precursors. MgO and silica with higher reactivity resulted in higher formation rate of magnesium silicate hydrate. In addition, the impurity in the MgO affects the pH value of the blends, which in turn determines the solubility of silica and the formation of magnesium silicate hydrate. © 2014 Elsevier Ltd. All rights reserved.