26 resultados para 480
Resumo:
Particle concentration is known as a main factor that affects erosion rate of pipe bends in pneumatic conveyors. With consideration of different bend radii, the effect of particle concentration on weight loss of mild steel bends has been investigated in an industrial scale test rig. Experimental results show that there was a significant reduction of the specific erosion rate for high particle concentrations. This reduction was considered to be as a result of the shielding effect during the particle impacts. An empirical model is given. Also a theoretical study of scaling on the shielding effect, and comparisons with some existing models, are presented. It is found that the reduction in specific erosion rate (relative to particle concentration) has a stronger relationship in conveying pipelines than has been found in the erosion tester. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Developments in Micro-Electro-Mechanical Systems (MEMS), wireless communication systems and ad-hoc networking have created new dimensions to improve asset management not only during the operational phase but throughout an asset's lifecycle based on using improved quality of information obtained with respect to two key aspects of an asset: its location and condition. In this paper, we present our experience as well as lessons learnt from building a prototype condition monitoring platform to demonstrate and to evaluate the use of COTS wireless sensor networks to develop a prototype condition monitoring platform with the aim of improving asset management by providing accurate and real-time information. © 2010 IEEE.
Resumo:
Tubular permanent magnet linear generators are a promising generator technology for use in marine renewables. One aspect of their design relates to the conditions necessary for achieving a smooth thrust response from the generator, free from cogging and periodic variations due to spatial harmonics of the flux cutting the generator coils. This paper presents an experimental and finite element study of the sources of thrust ripple in a prototype linear generator for marine generation. A simple self-commutated control scheme is shown, which uses linear Hall-effect sensors and look-up-table based feed-forward compensation to derive the excitation currents required to drive the machine with constant force. Details of the controller's FPGA based implementation are given, including its strategy for detecting sensor failure. © 2011 IEEE.
Resumo:
Estimating the fundamental matrix (F), to determine the epipolar geometry between a pair of images or video frames, is a basic step for a wide variety of vision-based functions used in construction operations, such as camera-pair calibration, automatic progress monitoring, and 3D reconstruction. Currently, robust methods (e.g., SIFT + normalized eight-point algorithm + RANSAC) are widely used in the construction community for this purpose. Although they can provide acceptable accuracy, the significant amount of required computational time impedes their adoption in real-time applications, especially video data analysis with many frames per second. Aiming to overcome this limitation, this paper presents and evaluates the accuracy of a solution to find F by combining the use of two speedy and consistent methods: SURF for the selection of a robust set of point correspondences and the normalized eight-point algorithm. This solution is tested extensively on construction site image pairs including changes in viewpoint, scale, illumination, rotation, and moving objects. The results demonstrate that this method can be used for real-time applications (5 image pairs per second with the resolution of 640 × 480) involving scenes of the built environment.
Resumo:
We present results on laser action from liquid crystal compounds whereby one sub-unit of the molecular structure consists of the cyano-substituted chromophore, {phenylene-bis (2-cyanopropene)}, similar to the basic unit of the semiconducting polymer structure poly(cyanoterephthalylidene). These compounds were found to exhibit nematic liquid crystal phases. In addition, by virtue of the liquid crystalline properties, the compounds were found to be highly miscible in wide temperature range commercial nematogen mixtures. When optically excited at λ = 355 nm, laser emission was observed in the blue/green region of the visible spectrum (480-530 nm) and at larger concentrations by weight than is achievable using conventional laser dyes. Upon increasing the concentration of dye from 2 to 5 wt.% the threshold was found to increase from Eth = 0.42 ± 0.02 μJ/pulse (≈20 mJ/cm2) to Eth = 0.66 ± 0.03 μJ/pulse (≈34 mJ/cm2). Laser emission was also observed at concentrations of 10 wt.% but was less stable than that observed for lower concentrations of the chromophore. © 2012 Elsevier B.V. All rights reserved.
Resumo:
The creep rate of polycrystalline Fe3O4 has been measured as a fonction of stress and oxygen partial pressure in the temperature range 480-1100°C. A regime of power law creep is found at high stress, with a stress exponent of ≈- 3.1 and an activation energy of 264 kJ/mol. A regime of diffusional flow is found at lower stresses and is interpreted as Nabarro-Herring creep. The data for the two regimes are combined to deduce an oxygen diffusion coefficient of ≈-10-5 exp(-264 kJ/mol/RT) m2s-1, with oxygen vacancies suggested as the mobile species. © 1990.
Resumo:
Ba1.6Ca2.3Y1.1Fe5O13 is an Fe3+ oxide adopting a complex perovskite superstructure, which is an ordered intergrowth between the Ca2Fe2O5 and YBa2Fe3O8 structures featuring octahedral, square pyramidal, and tetrahedral B sites and three distinct A site environments. The distribution of A site cations was evaluated by combined neutron and X-ray powder diffraction. Consistent with the Fe3+ charge state, the material is an antiferromagnetic insulator with a Néel temperature of 480-485 °C and has a relatively low d.c. conductivity of 2.06 S cm-1 at 700 °C. The observed area specific resistance in symmetrical cell cathodes with the samarium-doped ceria electrolyte is 0.87 Ω cm2 at 700 °C, consistent with the square pyramidal Fe3+ layer favoring oxide ion formation and mobility in the oxygen reduction reaction. Density functional theory calculations reveal factors favoring the observed cation ordering and its influence on the electronic structure, in particular the frontier occupied and unoccupied electronic states. © 2010 American Chemical Society.
Resumo:
We report the fabrication of a mechanically-flexible 16×16 array of thin-film, micron-size LEDs emitting at 480 nm. Devices were transfer-printed onto a mechanically-flexible ITO backplane using a modified, high-precision (placement accuracy ±25 nm) assembly system. © 2013 IEEE.