33 resultados para 391


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanoindentation is a popular technique for measuring the intrinsic mechanical response of bone and has been used to measure a single-valued elastic modulus. However, bone is a composite material with 20-80 nm hydroxyapatite plates embedded in a collagen matrix, and modern instrumentation allows for measurements at these small length scales. The present study examines the indentation response of bone and artificial gelatin-apatite nanocomposite materials across three orders of magnitude of lengthscale, from nanometers to micrometers, to isolate the composite phase contributions to the overall response. The load-displacement responses were variable and deviated from the quadratic response of homogeneous materials at small depths. The distribution of apparent elastic modulus values narrowed substantially with increasing indentation load. Indentation of particulate nanocomposites was simulated using finite element analysis. Modeling results replicated the convergence in effective modulus seen in the experiments. It appears that the apatite particles are acting as the continuous ("matrix") phase in bone and nanocomposites. Copyright © 2004 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce a new algorithm to automatically identify the time and pixel location of foot contact events in high speed video of sprinters. We use this information to autonomously synchronise and overlay multiple recorded performances to provide feedback to athletes and coaches during their training sessions. The algorithm exploits the variation in speed of different parts of the body during sprinting. We use an array of foreground accumulators to identify short-term static pixels and a temporal analysis of the associated static regions to identify foot contacts. We evaluated the technique using 13 videos of three sprinters. It successfully identifed 55 of the 56 contacts, with a mean localisation error of 1.39±1.05 pixels. Some videos were also seen to produce additional, spurious contacts. We present heuristics to help identify the true contacts. © 2011 Springer-Verlag Berlin Heidelberg.