41 resultados para 317-U1352D


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the 'free-ball' version of the micro-scale abrasion or ball-cratering test the rotating ball rests against a tilted sample and a grooved drive shaft. Tests under nominally identical conditions with different apparatus commonly show small but significant differences in measured wear rate. An indirect method has been developed and demonstrated for continuous on-line measurement of the coefficient of friction in the free-ball test. Experimental investigation of the effects of sample tilt angle and drive shaft groove width shows that both these factors influence the stability of the rotation of the ball, and the shape of the abrasive slurry pool, which in turn affect the coefficient of friction in the wear scar area and the measured wear rate. It is suggested that in order to improve the reproducibility of this method the geometry of the apparatus should be specified. For the apparatus used in this work with a steel ball of 25 mm diameter, a sample tilt angle of 60-75° and a shaft groove width of about 10mm provided the most stable ball motion and a wear rate which showed least variability. © 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A microelectronic parallel electron-beam lithography system using an array of field emitting microguns is currently being developed. This paper investigates the suitability of various carbon based materials for the electron source in this device, namely tetrahedrally bonded amorphous carbon (ta-C), nanoclustered carbon and carbon nanotubes. Ta-C was most easily integrated into a gated field emitter structure and various methods, such as plasma and heavy ion irradiation, were used to induce emission sites in the ta-C. However, the creation of such emission sites at desired locations appeared to be difficult/random in nature and thus the material was unsuitable for this application. In contrast, nanoclustered carbon material readily field emits with a high site density but the by-products from the deposition process create integration issues when using the material in a microelectronic gated structure. Carbon nanotubes are currently the most promising candidate for use as the emission source. We have developed a high yield and clean (amorphous carbon by-product free) PECVD process to deposit single free standing nanotubes at desired locations with exceptional uniformity in terms of nanotube height and diameter. Field emission from an array of nanotubes was also obtained. © 2001 Elsevier Science B.V.

Relevância:

10.00% 10.00%

Publicador: