47 resultados para 240501 Acoustics and Acoustical Devices


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One-dimensional ferroelectric nanostructures, carbon nanotubes (CNT) and CNTinorganic oxides have recently been studied due to their potential applications for microelectronics. Here, we report coating of a registered array of aligned multi-wall carbon nanotubes (MWCNT) grown on silicon substrates by functional ferroelectric Pb(Zr,Ti)O 3 (PZT) which produces structures suitable for commercial prototype memories. Microstructural analysis reveals the crystalline nature of PZT with small nanocrystals aligned in different directions. First-order Raman modes of MWCNT and PZT/MWCNT/n-Si show the high structural quality of CNT before and after PZT deposition at elevated temperature. PZT exists mostly in the monoclinic Cc/Cm phase, which is the origin of the high piezoelectric response in the system. Lowloss square piezoelectric hysteresis obtained for the 3D bottom-up structure confirms the switchability of the device. Currentvoltage mapping of the device by conducting atomic force microscopy (c-AFM) indicates very low transient current. Fabrication and functional properties of these hybrid ferroelectriccarbon nanotubes is the first step towards miniaturization for future nanotechnology sensors, actuators, transducers and memory devices. © 2012 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an increasing demand for optimising complete systems and the devices within that system, including capturing the interactions between the various multi-disciplinary (MD) components involved. Furthermore confidence in robust solutions is esential. As a consequence the computational cost rapidly increases and in many cases becomes infeasible to perform such conceptual designs. A coherent design methodology is proposed, where the aim is to improve the design process by effectively exploiting the potential of computational synthesis, search and optimisation and conventional simulation, with a reduction of the computational cost. This optimization framework consists of a hybrid optimization algorithm to handles multi-fidelity simulations. Simultaneously and in order to handles uncertainty without recasting the model and at affordable computational cost, a stochastic modelling method known as non-intrusive polynomial chaos is introduced. The effectiveness of the design methodology is demonstrated with the optimisation of a submarine propulsion system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The desire to design more efficient transport aircraft has led to many different attempts to minimize drag. One approach is the use of three-dimensional shock control bumps, which have gained popularity in the research community as simple, efficient and robust devices capable of reducing the wave drag of transonic wings. This paper presents a computational study of the performance of three-dimensional bumps, relating key bump design variables to the overall wing aerodynamic performance. An efficient parameterization scheme allows three-dimensional bumps to be directly compared to two-dimensional designs, indicating that two-dimensional bumps are capable of greater design point aerodynamic performance in the transonic regime. An advantage of three-dimensional bumps lies in the production of streamwise vortices, such that, while two-dimensional bumps are capable of superior performance near the design point, three-dimensional bumps are capable of breakingup regions of separated flow at high Mach numbers, suggesting improvement in terms of buffet margin. A range of bump designs are developed that exhibit a tradeoff between design point aerodynamic efficiency and improvementinbuffet margin, indicating the potential for bespoke designs to be generated for different sections of a wing based on its flow characteristics. Copyright © 2012 by Jeremy Eastwood and Jerome Jarrett.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Film bulk acoustic resonators (FBARs) and solidly mounted resonators (SMRs) have the potential to significantly improve upon the sensitivity and minimum detection limit of traditional gravimetric sensors based on quartz crystal microbalances (QCMs) and surface acoustic wave resonators (SAWs). To date, neither FBAR nor SMR devices have been demonstrated to be superior to the other; hence the choice between them depends primarily on the users' ability to design/fabricate membranes and/or Bragg reflectors. In this work, it is shown that identically designed FBAR and SMR devices resonating at the same frequency exhibit different responsivities to mass loadings, Rm, and that the SMRs are less responsive than the FBARs. For the specific device design and resonant frequency (~2 GHz) of the resonators presented here, the FBARs' mass responsivity is ~20% greater than that of the SMRs', and although this value is not universal for all possible device designs, it clearly shows that FBAR devices should be favoured over SMRs in gravimetric sensing applications where the FBARs' fragility is not an issue. Numerical calculations based on Mason's model offer an insight into the physical mechanisms behind the greater FBARs responsivity, and it was shown that the Bragg reflector has an effect on the acoustic load at one of the facets of the piezoelectric films which is in turn responsible for the SMRs' lower responsivity to mass loadings. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have performed a comparative study of ultrafast charge carrier dynamics in a range of III-V nanowires using optical pump-terahertz probe spectroscopy. This versatile technique allows measurement of important parameters for device applications, including carrier lifetimes, surface recombination velocities, carrier mobilities and donor doping levels. GaAs, InAs and InP nanowires of varying diameters were measured. For all samples, the electronic response was dominated by a pronounced surface plasmon mode. Of the three nanowire materials, InAs nanowires exhibited the highest electron mobilities of 6000 cm² V⁻¹ s⁻¹, which highlights their potential for high mobility applications, such as field effect transistors. InP nanowires exhibited the longest carrier lifetimes and the lowest surface recombination velocity of 170 cm s⁻¹. This very low surface recombination velocity makes InP nanowires suitable for applications where carrier lifetime is crucial, such as in photovoltaics. In contrast, the carrier lifetimes in GaAs nanowires were extremely short, of the order of picoseconds, due to the high surface recombination velocity, which was measured as 5.4 × 10⁵ cm s⁻¹. These findings will assist in the choice of nanowires for different applications, and identify the challenges in producing nanowires suitable for future electronic and optoelectronic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

GaAs, InAs, and InGaAs nanowires each exhibit significant potential to drive new applications in electronic and optoelectronic devices. Nevertheless, the development of these devices depends on our ability to fabricate these nanowires with tight control over critical properties, such as nanowire morphology, orientation, crystal structure, and chemical composition. Although GaAs and InAs are related material systems, GaAs and InAs nanowires exhibit very different growth behaviors. An understanding of these growth behaviors is imperative if high-quality ternary InGaAs nanowires are to be realized. This report examines GaAs, InAs, and InGaAs nanowires, and how their growth may be tailored to achieve desirable material properties. GaAs and InAs nanowire growth are compared, with a view toward the growth of high-quality InGaAs nanowires with device-accessible properties. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate how to tailor the structural, crystallographic and optical properties of GaAs nanowires. Nanowires were grown by Au nanoparticle-catalyzed metalorganic chemical vapor deposition. A high arsine flow rate, that is, a high ratio of group V to group III precursors, imparts significant advantages. It dramatically reduces planar crystallographic defects and reduces intrinsic carbon dopant incorporation. Increasing V/III ratio further, however, instigates nanowire kinking and increases nanowire tapering. By choosing an intermediate V/III ratio we achieve uniform, vertically aligned GaAs nanowires, free of planar crystallographic defects, with excellent optical properties and high purity. These findings will greatly assist the development of future GaAs nanowire-based electronic and optoelectronic devices, and are expected to be more broadly relevant to the rational synthesis of other III-V nanowires. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The drive for low emission combustion systems encourages applications using premixed flames. Yet in many applications, considerations of flame stability or mixing times lead to systems with neither premixed nor diffusion flames, which are often called technically premixed or stratified flames. In this talk we discuss the current state of understanding of the effect of mixing and extent of stratification on the structure, microstructure and dynamics of selected turbulent stratified flames. Over the past few years, a significant database of scalar and velocity data has been built to analyze the effects of unmixedness on local and global flame structure. Microscale studies of the flame structures show in detail how the effect of local stratification affects (or not!) the flame structure, flame surface density and scalar dissipation rates, and production of selected species. The experiments place exacting demands on current spectroscopic diagnostics, and reveal the progress and limits to our understanding of turbulent flames in general. The dynamics of stratified flames with respect to instabilities is also shown to be very rich, as the particular shape of the flames and the stabilization points are is significantly affected by the fuel distribution, modifying the rate and location of heat release, and thus the coupling with the surrounding acoustics and determining the onset of self-excitations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A variety of devices at nanometer scale / molecular scale for electronic, photonics, optoelectronics, biological and mechanical applications have been created through a rapid development of materials and fabrication technology. Further development of nanodevices strongly depends on the state-of-the-art knowledge of science and technology at the sub-100nm length scale. This symposium proceedings serves as a nice platform on which scientists and engineers can present and highlight some of the key advances in the following topics: Electronic and optoelectronic devices of nanometer scale / molecular scale. Nanomechanics and NEMS. Electromechanical coupled devices. Manipulation and aligning processes at nanometer scale / molecular scale. Quantum phenomena. Modeling of nanodevices and nanostructures. Fabrication and property characterization of nanodevices. Nanofabrication with focused beam technology, e.g., focused ion beam, laser and proton beam. © 2012 by Pan Stanford Publishing Pte. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a versatile and cost-effective way of controlling the unsaturated loss, modulation depth and saturation fluence of graphene-based saturable absorbers (GSAs), by changing the thickness of a spacer between SLG and a high-reflection mirror. This allows us to modulate the electric field intensity enhancement at the GSA from 0 up to 400%, due to the interference of incident and reflected light at the mirror. The unsaturated loss of the SLG-mirror-assembly can be reduced to$\sim$0. We use this to mode-lock a VECSEL from 935 to 981nm. This approach can be applied to integrate SLG into various optical components, such as output coupler mirrors, dispersive mirrors, dielectric coatings on gain materials. Conversely, it can also be used to increase absorption (up to 10%) in various graphene based photonics and optoelectronics devices, such as photodetectors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of long-length, high current density Bi2Sr 2CaCu2Ox wires and (RE)Ba2Cu 3Oy coated conductors has now advanced such that superconducting magnets for energy applications and high field applications are progressing rapidly. Europe, along with China, Korea the US and Japan is an important player in the development and exploitation of High Temperature Superconductors in practical applications. © 2013 IEEE.