32 resultados para 238
Resumo:
A simple model of deploying tree leaves is assembled in different arrangements to produce polygonal foldable membranes for use as deployable structures. One family of folding patterns exhibits a small strain mechanism, which is investigated. Variations on the basic arrangements can be used to fold membranes with a discretized curvature.
Resumo:
At high Reynolds numbers, wake flows become more globally unstable when they are confined within a duct or between two flat plates. At Reynolds numbers around 100, however, global analyses suggest that such flows become more stable when confined, while local analyses suggest that they become more unstable. The aim of this paper is to resolve this apparent contradiction by examining a set of obstacle-free wakes. In this theoretical and numerical study, we combine global and local stability analyses of planar wake flows at $\mathit{Re}= 100$ to determine the effect of confinement. We find that confinement acts in three ways: it modifies the length of the recirculation zone if one exists, it brings the boundary layers closer to the shear layers, and it can make the flow more locally absolutely unstable. Depending on the flow parameters, these effects work with or against each other to destabilize or stabilize the flow. In wake flows at $\mathit{Re}= 100$ with free-slip boundaries, flows are most globally unstable when the outer flows are 50 % wider than the half-width of the inner flow because the first and third effects work together. In wake flows at $\mathit{Re}= 100$ with no-slip boundaries, confinement has little overall effect when the flows are weakly confined because the first two effects work against the third. Confinement has a strong stabilizing effect, however, when the flows are strongly confined because all three effects work together. By combining local and global analyses, we have been able to isolate these three effects and resolve the apparent contradictions in previous work.
Resumo:
Abstract—There are sometimes occasions when ultrasound beamforming is performed with only a subset of the total data that will eventually be available. The most obvious example is a mechanically-swept (wobbler) probe in which the three-dimensional data block is formed from a set of individual B-scans. In these circumstances, non-blind deconvolution can be used to improve the resolution of the data. Unfortunately, most of these situations involve large blocks of three-dimensional data. Furthermore, the ultrasound blur function varies spatially with distance from the transducer. These two facts make the deconvolution process time-consuming to implement. This paper is about ways to address this problem and produce spatially-varying deconvolution of large blocks of three-dimensional data in a matter of seconds. We present two approaches, one based on hardware and the other based on software. We compare the time they each take to achieve similar results and discuss the computational resources and form of blur model that each requires.
Resumo:
The operating range of an axial compressor is often restricted by a safety imposed stall margin. One possible way of regaining operating range is with the application of casing treatment. Of particular interest here is the type of casing treatment which extracts air from a high pressure location in the compressor and re-injects it through discrete loops into the rotor tip region. Existing re-circulation systems have the disadvantage of reducing compressor efficiency at design conditions because worked flow is unnecessarily re-circulated at these operating conditions. Re-circulation is really only needed near stall. This paper proposes a self-regulating casing treatment in which the re-circulated flow is minimized at compressor design conditions and maximized near stall. The self-regulating capability is achieved by taking advantage of changes which occur in the tip clearance velocity and pressure fields as the compressor is throttled toward stall. In the proof-of-concept work reported here, flow is extracted from the high pressure region over the rotor tips and re-injected just upstream of the same blade row. Parametric studies are reported in which the flow extraction and re-injection ports are optimized for location, shape and orientation. The optimized design is shown to compare favorably with a circumferential groove tested in the same compressor. The relationship between stall inception type and casing treatment effectiveness is also investigated. The self-regulating aspect of the new design works well: stall margin improvements from 2.2 to 6.0% are achieved for just 0.25% total air re-circulated near stall and half that near design conditions. The self-regulating capability is achieved by the selective location and orientation of the extraction hole; a simple model is discussed which predicts the optimum axial location. Copyright © 2011 by ASME.
Resumo:
A theoretical description of the turbulent mixing within and the draining of a dense fluid layer from a box connected to a uniform density, quiescent environment through openings in the top and the base of the box is presented in this paper. This is an extension of the draining model developed by Linden et al. (Annu. Rev. Fluid Mech. vol. 31, 1990, pp. 201-238) and includes terms that describe localized mixing within the emptying box at the density interface. Mixing is induced by a turbulent flow of replacement fluid into the box and as a consequence we predict, and observe in complementary experiments, the development of a three-layer stratification. Based on the data collated from previous researchers, three distinct formulations for entrainment fluxes across density interfaces are used to account for this localized mixing. The model was then solved numerically for the three mixing formulations. Analytical solutions were developed for one formulation directly and for a second on assuming that localized mixing is relatively weak though still significant in redistributing buoyancy on the timescale of the draining process. Comparisons between our theoretical predictions and the experimental data, which we have collected on the developing layer depths and their densities show good agreement. The differences in predictions between the three mixing formulations suggest that the normalized flux turbulently entrained across a density interface tends to a constant value for large values of a Froude number FrT, based on conditions of the inflow through the top of the box, and scales as the cube of FrT for small values of FrT. The upper limit on the rate of entrainment into the mixed layer results in a minimum time (tD) to remove the original dense layer. Using our analytical solutions, we bound this time and show that 0.2tE ≈tD tE, i.e. the original dense layer may be depleted up to five times more rapidly than when there is no internal mixing and the box empties in a time tE. © 2010 Cambridge University Press.