29 resultados para 230106 Real and Complex Functions
Resumo:
The dynamics of a fluid in a vertical tube, subjected to an oscillatory pressure gradient, is studied experimentally for both a Newtonian and a viscoelastic shear-thinning fluid. Particle image velocimetry is used to determine the two-dimensional velocity fields in the vertical plane of the tube axis, in a range of driving amplitudes from 0.8 to 2.5 mm and of driving frequencies from 2.0 to 11.5 Hz. The Newtonian fluid exhibits a laminar flow regime, independent of the axial position, in the whole range of drivings. For the complex fluid, instead, the parallel shear flow regime exhibited at low amplitudes [Torralba, Phys. Rev. E 72, 016308 (2005)] becomes unstable at higher drivings against the formation of symmetric vortices, equally spaced along the tube. At even higher drivings the vortex structure itself becomes unstable, and complex nonsymmetric structures develop. Given that inertial effects remain negligible even at the hardest drivings (Re < 10(-1)), it is the complex rheology of the fluid that is responsible for the instabilities observed. The system studied represents an interesting example of the development of shear-induced instabilities in nonlinear complex fluids in purely parallel shear flow.
Resumo:
Establishing connectivity of products with real-time information about themselves can at one level provide accurate data, and at another, allow products to assess and influence their own destiny. In this way, the specification for an intelligent product is being built - one whose information content is permanently bound to its material content. This paper explores the impact of such development on supply chains, contrasting between simple and complex product supply chains. The Auto-ID project is on track to enable such connectivity between products and information using a single, open-standard, data repository for storage and retrieval of product information. The potential impact on the design and management of supply chains is immense. This paper provides an introduction to of some of these changes, demonstrating that by enabling intelligent products, Auto ID systems will be instrumental in driving future supply chains. The paper also identifies specific application areas for this technology in the product supply chain.
Resumo:
This paper presents a method for vote-based 3D shape recognition and registration, in particular using mean shift on 3D pose votes in the space of direct similarity transforms for the first time. We introduce a new distance between poses in this spacethe SRT distance. It is left-invariant, unlike Euclidean distance, and has a unique, closed-form mean, in contrast to Riemannian distance, so is fast to compute. We demonstrate improved performance over the state of the art in both recognition and registration on a real and challenging dataset, by comparing our distance with others in a mean shift framework, as well as with the commonly used Hough voting approach. © 2011 IEEE.
Resumo:
We propose an all-laser processing approach allowing controlled growth of organic-inorganic superlattice structures of rare-earth ion doped tellurium-oxide-based glass and optically transparent polydimethyl siloxane (PDMS) polymer; the purpose of which is to illustrate the structural and thermal compatibility of chemically dissimilar materials at the nanometer scale. Superlattice films with interlayer thicknesses as low as 2 nm were grown using pulsed laser deposition (PLD) at low temperatures (100 °C). Planar waveguides were successfully patterned by femtosecond-laser micro-machining for light propagation and efficient Er(3+)-ion amplified spontaneous emission (ASE). The proposed approach to achieve polymer-glass integration will allow the fabrication of efficient and durable polymer optical amplifiers and lossless photonic devices. The all-laser processing approach, discussed further in this paper, permits the growth of films of a multitude of chemically complex and dissimilar materials for a range of optical, thermal, mechanical and biological functions, which otherwise are impossible to integrate via conventional materials processing techniques.
Resumo:
In recent years we have been developing a meshing system which is aimed at eliminating the bottleneck represented by building meshes for real-world, complex turbomachinery configurations. This system is based on a rapid octree meshing technology which is then made conformal to the bodies present. The objective of this paper is to demonstrate that this class of mesh is not only very fast to produce but also fit-for-purpose in the sense that simulations generated with third-party commercial flow solvers like Fluent have the same accuracy as those performed on more conventional meshes. A range of standard examples and test cases will be presented. Copyright © 2011 by ASME.
Resumo:
This chapter presents a method for vote-based 3D shape recognition and registration, in particular using mean shift on 3D pose votes in the space of direct similarity transformations for the first time. We introduce a new distance between poses in this spacethe SRT distance. It is left-invariant, unlike Euclidean distance, and has a unique, closed-form mean, in contrast to Riemannian distance, so is fast to compute. We demonstrate improved performance over the state of the art in both recognition and registration on a (real and) challenging dataset, by comparing our distance with others in a mean shift framework, as well as with the commonly used Hough voting approach. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Lyapunov-like conditions that utilize generalizations of energy and barrier functions certifying Zeno behavior near Zeno equilibria are presented. To better illustrate these conditions, we will study them in the context of Lagrangian hybrid systems. Through the observation that Lagrangian hybrid systems with isolated Zeno equilibria must have a onedimensional configuration space, we utilize our Lyapunov-like conditions to obtain easily verifiable necessary and sufficient conditions for the existence of Zeno behavior in systems of this form. © 2007 IEEE.
Resumo:
The object of this paper is to give a complete treatment of the realizability of positive-real biquadratic impedance functions by six-element series-parallel networks comprising resistors, capacitors, and inductors. This question was studied but not fully resolved in the classical electrical circuit literature. Renewed interest in this question arises in the synthesis of passive mechanical impedances. Recent work by the authors has introduced the concept of a regular positive-real functions. It was shown that five-element networks are capable of realizing all regular and some (but not all) nonregular biquadratic positive-real functions. Accordingly, the focus of this paper is on the realizability of nonregular biquadratics. It will be shown that the only six-element series-parallel networks which are capable of realizing nonregular biquadratic impedances are those with three reactive elements or four reactive elements. We identify a set of networks that can realize all the nonregular biquadratic functions for each of the two cases. The realizability conditions for the networks are expressed in terms of a canonical form for biquadratics. The nonregular realizable region for each of the networks is explicitly characterized. © 2004-2012 IEEE.
Resumo:
The effect of displaying cytochromes from an amyloid fibre is modelled as perturbation of -strands in a bilayer of helical -sheets, thereby explaining the spiral morphology of decorated amyloid and the dynamic response of morphology to cytochrome conformation. The morphology of the modelled fibre, which consists of minimal energy assemblies of rigid building blocks containing two anisotropic interacting units, depends primarily on the rigid constraints between units rather than the soft interactions between them. The framework is a discrete version of the bilayered frustration principle that drives morphology in Bauhinia seedpods. We show that self-assembly of frustrated long range structures can occur if the building blocks themselves are internally frustrated, e.g. amyloid morphology is governed by the conformation of the misfolded protein nucleating the fibre. Our model supports the idea that any peptide sequence can form amyloid if bilayers can form first, albeit stabilised by additional material such as chaperones or cytochromes. Analysis of experimentally derived amyloid structures supports our conclusions and suggests a range of frustration effects, which natural amyloid fibres may exploit. From this viewpoint, amyloid appears as a molecular example of a more general universal bilayered frustration principle, which may have profound implications for materials design using fibrous systems. Our model provides quantitative guidance for such applications. The relevance to longer length scales was proved by designing the morphology of a series of macroscopic magnetic stacks. Finally, this work leads to the idea of mixing controlled morphologically defined species to generate higher-order assembly and complex functional behaviour. The systematic kinking of decorated fibres and the nested frustration of the Bauhinia seed pod are two outstanding examples.
Resumo:
This paper presents flow field measurements for the turbulent stratified burner introduced in two previous publications in which high resolution scalar measurements were made by Sweeney et al. [1,2] for model validation. The flow fields of the series of premixed and stratified methane/air flames are investigated under turbulent, globally lean conditions (φg=0.75). Velocity data acquired with laser Doppler anemometry (LDA) and particle image velocimetry (PIV) are presented and discussed. Pairwise 2-component LDA measurements provide profiles of axial velocity, radial velocity, tangential velocity and corresponding fluctuating velocities. The LDA measurements of axial and tangential velocities enable the swirl number to be evaluated and the degree of swirl characterized. Power spectral density and autocorrelation functions derived from the LDA data acquired at 10kHz are optimized to calculate the integral time scales. Flow patterns are obtained using a 2-component PIV system operated at 7Hz. Velocity profiles and spatial correlations derived from the PIV and LDA measurements are shown to be in very good agreement, thus offering 3D mapping of the velocities. A strong correlation was observed between the shape of the recirculation zones above the central bluff body and the effects of heat release, stoichiometry and swirl. Detailed analyses of the LDA data further demonstrate that the flow behavior changes significantly with the levels of swirl and stratification, which combines the contributions of dilatation, recirculation and swirl. Key turbulence parameters are derived from the total velocity components, combining axial, radial and tangential velocities. © 2013 The Combustion Institute.
Resumo:
The design of wind turbine blades is a true multi-objective engineering task. The aerodynamic effectiveness of the turbine needs to be balanced with the system loads introduced by the rotor. Moreover the problem is not dependent on a single geometric property, but besides other parameters on a combination of aerofoil family and various blade functions. The aim of this paper is therefore to present a tool which can help designers to get a deeper insight into the complexity of the design space and to find a blade design which is likely to have a low cost of energy. For the research we use a Computational Blade Optimisation and Load Deflation Tool (CoBOLDT) to investigate the three extreme point designs obtained from a multi-objective optimisation of turbine thrust, annual energy production as well as mass for a horizontal axis wind turbine blade. The optimisation algorithm utilised is based on Multi-Objective Tabu Search which constitutes the core of CoBOLDT. The methodology is capable to parametrise the spanning aerofoils with two-dimensional Free Form Deformation and blade functions with two tangentially connected cubic splines. After geometry generation we use a panel code to create aerofoil polars and a stationary Blade Element Momentum code to evaluate turbine performance. Finally, the obtained loads are fed into a structural layout module to estimate the mass and stiffness of the current blade by means of a fully stressed design. For the presented test case we chose post optimisation analysis with parallel coordinates to reveal geometrical features of the extreme point designs and to select a compromise design from the Pareto set. The research revealed that a blade with a feasible laminate layout can be obtained, that can increase the energy capture and lower steady state systems loads. The reduced aerofoil camber and an increased L/. D-ratio could be identified as the main drivers. This statement could not be made with other tools of the research community before. © 2013 Elsevier Ltd.
Resumo:
Industrial emergence is a broad and complex domain, with relevant perspectives ranging in scale from the individual entrepreneur and firm with the business decisions and actions they make to the policies of nations and global patterns of industrialisation. The research described in this article has adopted a holistic approach, based on structured mapping methods, in an attempt to depict and understand the dynamics and patterns of industrial emergence across a broad spectrum from early scientific discovery to large-scale industrialisation. The breadth of scope and application has enabled a framework and set of four tools to be developed that have wide applicability. The utility of the approaches has been demonstrated through case studies and trials in a diverse range of industrial contexts. The adoption of such a broad scope also presents substantial challenges and limitations, with these providing an opportunity for further research. © IMechE 2013.
Resumo:
Performance measurement and management (PMM) is a management and research paradox. On one hand, it provides management with many critical, useful, and needed functions. Yet, there is evidence that it can adversely affect performance. This paper attempts to resolve this paradox by focusing on the issue of "fit". That is, in today's dynamic and turbulent environment, changes in either the business environment or the business strategy can lead to the need for new or revised measures and metrics. Yet, if these measures and metrics are either not revised or incorrectly revised, then we can encounter situations where what the firm wants to achieve (as communicated by its strategy) and what the firm measures and rewards are not synchronised with each other (i.e., there is a lack of "fit"). This situation can adversely affect the ability of the firm to compete. The issue of fit is explored using a three phase Delphi approach. Initially intended to resolve this first paradox, the Delphi study identified another paradox - one in which the researchers found that in a dynamic environment, firms do revise their strategies, yet, often the PMM system is not changed. To resolve this second paradox, the paper proposes a new framework - one that shows that under certain conditions, the observed metrics "lag" is not only explainable but also desirable. The findings suggest a need to recast the accepted relationship between strategy and PMM system and the output included the Performance Alignment Matrix that had utility for managers. © 2013 .
Resumo:
Despite many approaches proposed in the past, robotic climbing in a complex vertical environment is still a big challenge. We present here an alternative climbing technology that is based on thermoplastic adhesive (TPA) bonds. The approach has a great advantage because of its large payload capacity and viability to a wide range of flat surfaces and complex vertical terrains. The large payload capacity comes from a physical process of thermal bonding, while the wide applicability benefits from rheological properties of TPAs at higher temperatures and intermolecular forces between TPAs and adherends when being cooled down. A particular type of TPA has been used in combination with two robotic platforms, featuring different foot designs, including heating/cooling methods and construction of footpads. Various experiments have been conducted to quantitatively assess different aspects of the approach. Results show that an exceptionally high ratio of 500% between dynamic payloads and body mass can be achieved for stable and repeatable vertical climbing on flat surfaces at a low speed. Assessments on four types of typical complex vertical terrains with a measure, i.e., terrain shape index ranging from -0.114 to 0.167, return a universal success rate of 80%-100%. © 2004-2012 IEEE.