277 resultados para dieletric devices


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Side by side with the great advantages of plasmonics in nanoscale light confinement, the inevitable ohmic loss results in significant joule heating in plasmonic devices. Therefore, understanding optical-induced heat generation and heat transport in integrated on-chip plasmonic devices is of major importance. Specifically, there is a need for in situ visualization of electromagnetic induced thermal energy distribution with high spatial resolution. This paper studies the heat distribution in silicon plasmonic nanotips. Light is coupled to the plasmonic nanotips from a silicon nanowaveguide that is integrated with the tip on chip. Heat is generated by light absorption in the metal surrounding the silicon nanotip. The steady-state thermal distribution is studied numerically and measured experimentally using the approach of scanning thermal microscopy. It is shown that following the nanoscale heat generation by a 10 mW light source within a silicon photonic waveguide the temperature in the region of the nanotip is increased by ∼ 15 °C compared with the ambient temperature. Furthermore, we also perform a numerical study of the dynamics of the heat transport. Given the nanoscale dimensions of the structure, significant heating is expected to occur within the time frame of picoseconds. The capability of measuring temperature distribution of plasmonic structures at the nanoscale is shown to be a powerful tool and may be used in future applications related to thermal plasmonic applications such as control heating of liquids, thermal photovoltaic, nanochemistry, medicine, heat-assisted magnetic memories, and nanolithography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following the miniaturization of photonic devices and the increase in data rates, the issues of self heating and heat removal in active nanophotonic devices should be considered and studied in more details. In this paper we use the approach of Scanning Thermal Microscopy (SThM) to obtain an image of the temperature field of a silicon micro ring resonator with sub-micron spatial resolution. The temperature rise in the device is a result of self heating which is caused by free carrier absorption in the doped silicon. The temperature is measured locally and directly using a temperature sensitive AFM probe. We show that this local temperature measurement is feasible in the photonic device despite the perturbation that is introduced by the probe. Using the above method we observed a significant self heating of about 10 degrees within the device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We experimentally demonstrate nanoscale thermal mapping of light induced heat in photonic and plasmonic devices using a thermocouple AFM tip. Numerical simulations results and nanoscale temperature measurements are presented and discussed. © OSA 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liquid crystal on silicon (LCOS) is one of the most exciting technologies, combining the optical modulation characteristics of liquid crystals with the power and compactness of a silicon backplane. The objective of our work is to improve cell assembly and inspection methods by introducing new equipment for automated assembly and by using an optical inspection microscope. A Suss-MicroTec Universal device bonder is used for precision assembly and device packaging and an Olympus BX51 high resolution microscope is employed for device inspection. © 2009 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method to reduce crosstalk is proposed for holographic wavelength selective switches (WSSs) using a customized merit function. A reduction in crosstalk >8 dB is measured when multicasting with a phase-only LCOS device. © OSA 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ni silicides used as contacts in source/drain and gate of advanced CMOS devices were analyzed by atom probe tomography (APT) at atomic scale. These measurements were performed on 45 nm nMOS after standard self-aligned silicide (salicide) process using Ni(5 at.% Pt) alloy. After the first annealing (RTA1), δ-Ni2Si was the only phase formed on gate and source/drain while, after the second annealing (RTA2), two different Ni silicides have been formed: NiSi on the gate and δ-Ni2Si on the source and drain. This difference between source/drain and gate regions in nMOS devices has been related to the Si substrate nature (poly or mono-crystalline) and to the size of the contact. In fact, NiSi seems to have difficulties to nucleate in the narrow source/drain contact on mono-crystalline Si. The results have been compared to analysis performed on 28 nm nMOS where the Pt concentration is higher (10 at.% Pt). In this case, θ-Ni2Si is the first phase to form after RTA1 and NiSi is then formed at the same time on source (or drain) and gate after RTA2. The absence of the formation of NiSi from δ-Ni 2Si/Si(1 0 0) interface compared to θ-Ni2Si/Si(1 0 0) interface could be related to the difference of the interface energies. The redistributions of As and Pt in different silicides and interfaces were measured and discussed. In particular, it has been evidenced that Pt redistributions obtained on both 45 and 28 nm MOS transistors correspond to respective Pt distributions measured on blanket wafers. © 2013 Elsevier B.V. All rights reserved.