288 resultados para Steel fiber


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a passively Q-switched thulium fiber laser, using a graphene-based saturable absorber. The laser is based on an all-fiber ring cavity and produces ∼2.3 μs pulses at 1884nm, with a maximum pulse energy of 70 nJ. © 2012 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mode-locked Raman laser, using 25 m of a GeO2 doped fiber as the gain medium, is reported employing carbon nanotubes. The oscillator generates 850 ps chirped pulses, which are externally compressed to 185 ps. © 2012 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stellite 6® powders were deposited on carbon steel using Supersonic Laser Deposition. The microstructure and performance of the coatings were examined using SEM, optical microscopy, EDS, XRD, microhardness testing and pin-on-disc wear testing. The results showed that the microstructure and wear behaviour of the most successful SLD deposition conditions with N2 at a pressure of 30bar, a temperature of 450°C and a deposition power of 1.5kW were compared with that of optimised laser cladding. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Employing a nanotube-based saturable absorber, we demonstrate a continuously tunable (1533-1563nm) ultrafast fiber laser, with output pulsewidth switchable between picosecond (1.2 ps) and femtosecond (610 fs) regimes. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a dual-wavelength, carbon nanotube mode-locked Er fiber laser. The laser outputs two wavelengths at 1549nm and 1562nm, and each wavelength corresponds to pulse duration of ∼1.3ps and repetition rate of ∼11.27MHz. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combination of light carbon fiber reinforced polymer (CFRP) composite materials with structurally efficient sandwich panel designs offers novel opportunities for ultralight structures. Here, pyramidal truss sandwich cores with relative densities ρ̄ in the range 1-10% have been manufactured from carbon fiber reinforced polymer laminates by employing a snap-fitting method. The measured quasi-static shear strength varied between 0.8 and 7.5 MPa. Two failure modes were observed: (i) Euler buckling of the struts and (ii) delamination failure of the laminates. Micro-buckling failure of the struts was not observed in the experiments reported here while Euler buckling and delamination failures occurred for the low (ρ̄≤1%) and high (ρ̄>1%) relative density cores, respectively. Analytical models for the collapse of the composite cores by these failure modes are presented. Good agreement between the measurements and predictions based on the Euler buckling and delamination failure of the struts is observed while the micro-buckling analysis over-predicts the measurements. The CFRP pyramidal cores investigated here have a similar mechanical performance to CFRP honeycombs. Thus, for a range of multi-functional applications that require an "open-celled" architecture (e.g. so that cooling fluid can pass through a sandwich core), the CFRP pyramidal cores offer an attractive alternative to honeycombs. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steel production is energy intensive so already has achieved impressive levels of energy efficiency. If the emissions associated with steel must be reduced in line with the requirements of the UK Climate Change Act, demand for new steel must be reduced. The strategies of 'material efficiency' aim to achieve such a reduction, while delivering the same final services. To meet the emissions targets set into UK law, UK consumption of steel must be reduced to 30 per cent of present levels by 2050. Previous work has revealed six strategies that could contribute to this target, and this paper presents an approximate analysis of the required transition. A macro-economic analysis of steel in the UK shows that while the steel industry is relatively small, the construction and manufacturing sectors are large, and it would be politically unacceptable to pursue options that lead to a major contraction in other sectors. Alternative business models are therefore required, and these are explored through four representative products--one for each final sector with particular emphasis given to options for reducing product weight, and extending product life. Preliminary evidence on the triggers that would lead to customers preferring these options is presented and organized in order to predict required policy measures. The estimated analysis of transitions explored in this paper is used to define target questions for future research in the area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steel production accounts for 25% of industrial carbon emissions. Long-term forecasts of steel demand and scrap supply are needed to develop strategies for how the steel industry could respond to industrialization and urbanization in the developing world while simultaneously reducing its environmental impact, and in particular, its carbon footprint. We developed a dynamic stock model to estimate future final demand for steel and the available scrap for 10 world regions. Based on evidence from developed countries, we assumed that per capita in-use stocks will saturate eventually. We determined the response of the entire steel cycle to stock saturation, in particular the future split between primary and secondary steel production. During the 21st century, steel demand may peak in the developed world, China, the Middle East, Latin America, and India. As China completes its industrialization, global primary steel production may peak between 2020 and 2030 and decline thereafter. We developed a capacity model to show how extensive trade of finished steel could prolong the lifetime of the Chinese steelmaking assets. Secondary steel production will more than double by 2050, and it may surpass primary production between 2050 and 2060: the late 21st century can become the steel scrap age.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identifying strategies for reducing greenhouse gas emissions from steel production requires a comprehensive model of the sector but previous work has either failed to consider the whole supply chain or considered only a subset of possible abatement options. In this work, a global mass flow analysis is combined with process emissions intensities to allow forecasts of future steel sector emissions under all abatement options. Scenario analysis shows that global capacity for primary steel production is already near to a peak and that if sectoral emissions are to be reduced by 50% by 2050, the last required blast furnace will be built by 2020. Emissions reduction targets cannot be met by energy and emissions efficiency alone, but deploying material efficiency provides sufficient extra abatement potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the face of increasing demand and limited emission reduction opportunities, the steel industry will have to look beyond its process emissions to bear its share of emission reduction targets. One option is to improve material efficiency - reducing the amount of metal required to meet services. In this context, the purpose of this paper is to explore why opportunities to improve material efficiency through upstream measures such as yield improvement and lightweighting might remain underexploited by industry. Established input-output techniques are applied to the GTAP 7 multi-regional input-output model to quantify the incentives for companies in key steel-using sectors (such as property developers and automotive companies) to seek opportunities to improve material efficiency in their upstream supply chains under different short-run carbon price scenarios. Because of the underlying assumptions, the incentives are interpreted as overestimates. The principal result of the paper is that these generous estimates of the incentives for material efficiency caused by a carbon price are offset by the disincentives to material efficiency caused by labour taxes. Reliance on a carbon price alone to deliver material efficiency would therefore be misguided and additional policy interventions to support material efficiency should be considered. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A severe shortage of good quality donor cornea is now an international crisis in public health. Alternatives for donor tissue need to be urgently developed to meet the increasing demand for corneal transplantation. Hydrogels have been widely used as scaffolds for corneal tissue regeneration due to their large water content, similar to that of native tissue. However, these hydrogel scaffolds lack the fibrous structure that functions as a load-bearing component in the native tissue, resulting in poor mechanical performance. This work shows that mechanical properties of compliant hydrogels can be substantially enhanced with electrospun nanofiber reinforcement. Electrospun gelatin nanofibers were infiltrated with alginate hydrogels, yielding transparent fiber-reinforced hydrogels. Without prior crosslinking, electrospun gelatin nanofibers improved the tensile elastic modulus of the hydrogels from 78±19 kPa to 450±100 kPa. Stiffer hydrogels, with elastic modulus of 820±210 kPa, were obtained by crosslinking the gelatin fibers with carbodiimide hydrochloride in ethanol before the infiltration process, but at the expense of transparency. The developed fiber-reinforced hydrogels show great promise as mechanically robust scaffolds for corneal tissue engineering applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposed a non-intrusive method of measuring the optical beam profile at the surface of the liquid crystal on silicon (LCOS) device in an optical fiber switch. This method is based on blazed grating and can be employed in situ (on-line) for two-dimensional beam profiling in the LCOS-based optical fiber switches without introducing additional components or rearranging the system. The measured beam radius was in excellent agreement with that measured by the knife-edge technique. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A severe shortage of good quality donor cornea is now an international crisis in public health. Alternatives for donor tissue need to be urgently developed to meet the increasing demand for corneal transplantation. Hydrogels have been widely used as scaffolds for corneal tissue regeneration due to their large water content, similar to that of native tissue. However, these hydrogel scaffolds lack the fibrous structure that functions as a load-bearing component in the native tissue, resulting in poor mechanical performance. This work shows that mechanical properties of compliant hydrogels can be substantially enhanced with electrospun nanofiber reinforcement. Electrospun gelatin nanofibers were infiltrated with alginate hydrogels, yielding transparent fiber-reinforced hydrogels. Without prior crosslinking, electrospun gelatin nanofibers improved the tensile elastic modulus of the hydrogels from 78±19. kPa to 450±100. kPa. Stiffer hydrogels, with elastic modulus of 820±210. kPa, were obtained by crosslinking the gelatin fibers with carbodiimide hydrochloride in ethanol before the infiltration process, but at the expense of transparency. The developed fiber-reinforced hydrogels show great promise as mechanically robust scaffolds for corneal tissue engineering applications. © 2013 Elsevier Ltd.