326 resultados para Space wavelength
Resumo:
The study of band-edge lasing from dye-doped chiral nematic liquid crystals has thus far been largely restricted to visible wavelengths. In this paper, a wide range of commercially available laser dyes are examined for their suitability as infrared emitters within a chiral nematic host. Problems such as poor solubility and reduced quantum efficiencies are overcome, and successful band-edge lasing is demonstrated within the range of 735-850 nm, using the dyes LD800, HITC-P and DOTC-P. This paper also reports on progress towards widely tuneable liquid crystal lasers, capable of emission in the region 460- 850 nm. Key to this is the use of common pump source, capable of simultaneously exciting all of the dyes (both infrared and visible) that are present within the system. Towards this aim, we successfully demonstrate near-infrared lasing (800 nm) facilitated by Förster energy transfer between the visible dye DCM, and the infra-red dye LD800, enabling pump wavelengths anywhere between 420 and 532 nm to be used. These results demonstrate that small and low-cost tuneable visible to near-infrared laser sources are achievable, using a single common pump source. Such devices are envisaged to have wide-ranging applications including medical imaging (including optical coherence tomography), point-of-care optical medical diagnostics (such as flow cytometry), telecommunications, and optical signatures for security coatings. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
Simultaneous high power (2W), high modulation speed (1Gb/s) and high modulation efficiency (14 W/A) operation of a two-electrode tapered laser is reported. © 2011 IEEE.
Resumo:
Several elastoplastic soil models have been proposed over the years that are formulated in strain space rather than stress space due to certain analytical and computational advantages. One such model, BRICK (Simpson 1992), has been continuously utilized and developed for industrial applications within Arup Geotechnics for more than two decades. This paper aims to describe the advantages and difficulties associated with strain space modeling. In addition, it will show how recent advances in modeling the effects of stress history, stiffness anisotropy, strength anisotropy and time-dependence in conventional stress space models can be transferred to the BRICK model. © 2010 Taylor & Francis Group, London.
Resumo:
Atmospheric effects can significantly degrade the reliability of free-space optical communications. One such effect is scintillation, caused by atmospheric turbulence, refers to random fluctuations in the irradiance and phase of the received laser beam. In this paper we inv stigate the use of multiple lasers and multiple apertures to mitigate scintillation. Since the scintillation process is slow, we adopt a block fading channel model and study the outage probability under the assumptions of orthogonal pulse-position modulation and non-ideal photodetection. Assuming perfect receiver channel state information (CSI), we derive the signal-to-noise ratio (SNR) exponents for the cases when the scintillation is lognormal, exponential and gammagamma distributed, which cover a wide range of atmospheric turbulence conditions. Furthermore, when CSI is also available at the transmitter, we illustrate very large gains in SNR are possible (in some cases larger than 15 dB) by adapting the transmitted power. Under a long-term power constraint, we outline fundamental design criteria via a simple expression that relates the required number of lasers and apertures for a given code rate and number of codeword blocks to completely remove system outages. Copyright © 2009 IEEE.
Resumo:
New space-time trellis codes with four- and eight-level phase-shift keying (PSK) and 16-phase quadrature amplitude modulation (QAM) for two transmit antennas in slow-fading channels are presented in this paper. Unlike most of the codes that are reported in the literature, the proposed codes are specifically designed to minimize the frame error probability from a union-bound perspective. The performance of the proposed codes with various memory orders and receive antennas is evaluated by simulation. It is shown that the proposed codes outperform previously known codes in all studied cases.