284 resultados para Particle Trajectory Computation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of a slug of dry sand particles against a metallic sandwich beam or circular sandwich plate is analysed in order to aid the design of sandwich panels for shock mitigation. The sand particles interact via a combined linear-spring-and-dashpot law whereas the face sheets and compressible core of the sandwich beam and plate are treated as rate-sensitive, elastic-plastic solids. The majority of the calculations are performed in two dimensions and entail the transverse impact of end-clamped monolithic and sandwich beams, with plane strain conditions imposed. The sand slug is of rectangular shape and comprises a random loose packing of identical, circular cylindrical particles. These calculations reveal that loading due to the sand is primarily inertial in nature with negligible fluid-structure interaction: the momentum transmitted to the beam is approximately equal to that of the incoming sand slug. For a slug of given incoming momentum, the dynamic deflection of the beam increases with decreasing duration of sand-loading until the impulsive limit is attained. Sandwich beams with thick, strong cores significantly outperform monolithic beams of equal areal mass. This performance enhancement is traced to the "sandwich effect" whereby the sandwich beams have a higher bending strength than that of the monolithic beams. Three-dimensional (3D) calculations are also performed such that the sand slug has the shape of a circular cylindrical column of finite height, and contains spherical sand particles. The 3D slug impacts a circular monolithic plate or sandwich plate and we show that sandwich plates with thick strong cores again outperform monolithic plates of equal areal mass. Finally, we demonstrate that impact by sand particles is equivalent to impact by a crushable foam projectile. The calculations on the equivalent projectile are significantly less intensive computationally, yet give predictions to within 5% of the full discrete particle calculations for the monolithic and sandwich beams and plates. These foam projectile calculations suggest that metallic foam projectiles can be used to simulate the loading by sand particles within a laboratory setting. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the smoothing problem for a class of conditionally linear Gaussian state-space (CLGSS) models, referred to as mixed linear/nonlinear models. In contrast to the better studied hierarchical CLGSS models, these allow for an intricate cross dependence between the linear and the nonlinear parts of the state vector. We derive a Rao-Blackwellized particle smoother (RBPS) for this model class by exploiting its tractable substructure. The smoother is of the forward filtering/backward simulation type. A key feature of the proposed method is that, unlike existing RBPS for this model class, the linear part of the state vector is marginalized out in both the forward direction and in the backward direction. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An integrated 2-D model of a lithium ion battery is developed to study the mechanical stress in storage particles as a function of material properties. A previously developed coupled stress-diffusion model for storage particles is implemented in 2-D and integrated into a complete battery system. The effect of morphology on the stress and lithium concentration is studied for the case of extraction of lithium in terms of previously developed non-dimensional parameters. These non-dimensional parameters include the material properties of the storage particles in the system, among other variables. We examine particles functioning in isolation as well as in closely-packed systems. Our results show that the particle distance from the separator, in combination with the material properties of the particle, is critical in predicting the stress generated within the particle. © 2012 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A High Temperature Condensation Particle Counter (HT-CPC) is described that operates at an elevated temperature of up to ca. 300. °C such that volatile particles from typical combustion sources are not counted. The HT-CPC is functionally identical to a conventional CPC, the main challenge being to find suitable non-hazardous working fluids, with good stability, and an appropriate vapour pressure. Some key design features are described, and results of modelling which predict the HT-CPC counting efficiency. Experimental results are presented for several candidate fluids when the HT-CPC was challenged with ambient, NaCl and diesel soot particles, and the results show good agreement with modelled predictions, and confirm that counting of particles of diameters down to at least 10. nm was achievable. Possible applications are presented, including measurement of particles from a diesel car engine and comparison with a near PMP system. © 2014 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temporal synchronization of multiple video recordings of the same dynamic event is a critical task in many computer vision applications e.g. novel view synthesis and 3D reconstruction. Typically this information is implied through the time-stamp information embedded in the video streams. User-generated videos shot using consumer grade equipment do not contain this information; hence, there is a need to temporally synchronize signals using the visual information itself. Previous work in this area has either assumed good quality data with relatively simple dynamic content or the availability of precise camera geometry. Our first contribution is a synchronization technique which tries to establish correspondence between feature trajectories across views in a novel way, and specifically targets the kind of complex content found in consumer generated sports recordings, without assuming precise knowledge of fundamental matrices or homographies. We evaluate performance using a number of real video recordings and show that our method is able to synchronize to within 1 sec, which is significantly better than previous approaches. Our second contribution is a robust and unsupervised view-invariant activity recognition descriptor that exploits recurrence plot theory on spatial tiles. The descriptor is individually shown to better characterize the activities from different views under occlusions than state-of-the-art approaches. We combine this descriptor with our proposed synchronization method and show that it can further refine the synchronization index. © 2013 ACM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

State-space models are successfully used in many areas of science, engineering and economics to model time series and dynamical systems. We present a fully Bayesian approach to inference and learning (i.e. state estimation and system identification) in nonlinear nonparametric state-space models. We place a Gaussian process prior over the state transition dynamics, resulting in a flexible model able to capture complex dynamical phenomena. To enable efficient inference, we marginalize over the transition dynamics function and, instead, infer directly the joint smoothing distribution using specially tailored Particle Markov Chain Monte Carlo samplers. Once a sample from the smoothing distribution is computed, the state transition predictive distribution can be formulated analytically. Our approach preserves the full nonparametric expressivity of the model and can make use of sparse Gaussian processes to greatly reduce computational complexity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, there has been increasing interest in the study of gait patterns in both animals and robots, because it allows us to systematically investigate the underlying mechanisms of energetics, dexterity, and autonomy of adaptive systems. In particular, for morphological computation research, the control of dynamic legged robots and their gait transitions provides additional insights into the guiding principles from a synthetic viewpoint for the emergence of sensible self-organizing behaviors in more-degrees-of-freedom systems. This article presents a novel approach to the study of gait patterns, which makes use of the intrinsic mechanical dynamics of robotic systems. Each of the robots consists of a U-shaped elastic beam and exploits free vibration to generate different locomotion patterns. We developed a simplified physics model of these robots, and through experiments in simulation and real-world robotic platforms, we show three distinctive mechanisms for generating different gait patterns in these robots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been an increasing interest in the use of mechanical dynamics, (e.g., assive, Elastic, And viscous dynamics) for energy efficient and agile control of robotic systems. Despite the impressive demonstrations of behavioural performance, The mechanical dynamics of this class of robotic systems is still very limited as compared to those of biological systems. For example, Passive dynamic walkers are not capable of generating joint torques to compensate for disturbances from complex environments. In order to tackle such a discrepancy between biological and artificial systems, We present the concept and design of an adaptive clutch mechanism that discretely covers the full-range of dynamics. As a result, The system is capable of a large variety of joint operations, including dynamic switching among passive, actuated and rigid modes. The main innovation of this paper is the framework and algorithm developed for controlling the trajectory of such joint. We present different control strategies that exploit passive dynamics. Simulation results demonstrate a significant improvement in motion control with respect to the speed of motion and energy efficiency. The actuator is implemented in a simple pendulum platform to quantitatively evaluate this novel approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditionally, in robotics, artificial intelligence and neuroscience, there has been a focus on the study of the control or the neural system itself. Recently there has been an increasing interest in the notion of embodiment not only in robotics and artificial intelligence, but also in the neurosciences, psychology and philosophy. In this paper, we introduce the notion of morphological computation, and demonstrate how it can be exploited on the one hand for designing intelligent, adaptive robotic systems, and on the other hand for understanding natural systems. While embodiment has often been used in its trivial meaning, i.e. "intelligence requires a body", the concept has deeper and more important implications, concerned with the relation between physical and information (neural, control) processes. Morphological computation is about connecting body, brain and environment. A number of case studies are presented to illustrate the concept. We conclude with some speculations about potential lessons for neuroscience and robotics. © 2006 Elsevier B.V. All rights reserved.