257 resultados para Electric tracking


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the authors investigate a number of design and market considerations for an axial flux superconducting electric machine design that uses high temperature superconductors. The axial flux machine design is assumed to utilise high temperature superconductors in both wire (stator winding) and bulk (rotor field) forms, to operate over a temperature range of 65-77 K, and to have a power output in the range from 10s of kW up to 1 MW (typical for axial flux machines), with approximately 2-3 T as the peak trapped field in the bulk superconductors. The authors firstly investigate the applicability of this type of machine as a generator in small- and medium-sized wind turbines, including the current and forecasted market and pricing for conventional turbines. Next, a study is also carried out on the machine's applicability as an in-wheel hub motor for electric vehicles. Some recommendations for future applications are made based on the outcome of these two studies. Finally, the cost of YBCO-based superconducting (2G HTS) wire is analysed with respect to competing wire technologies and compared with current conventional material costs and current wire costs for both 1G and 2G HTS are still too great to be economically feasible for such superconducting devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present novel batch and online (sequential) versions of the expectation-maximisation (EM) algorithm for inferring the static parameters of a multiple target tracking (MTT) model. Online EM is of particular interest as it is a more practical method for long data sets since in batch EM, or a full Bayesian approach, a complete browse of the data is required between successive parameter updates. Online EM is also suited to MTT applications that demand real-time processing of the data. Performance is assessed in numerical examples using simulated data for various scenarios. For batch estimation our method significantly outperforms an existing gradient based maximum likelihood technique, which we show to be significantly biased. © 2014 Springer Science+Business Media New York.