276 resultados para Carpal-tunnel Pressure


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a new flow mechanism for the reduction of secondary flows in Low Pressure Turbines using the benefit of contoured endwalls. The extensive application of contoured endwalls in recent years has provided a deeper understanding of the physical phenomenon that governs the reduction of secondary flows. Based on this understanding, the endwall geometry of a linear cascade of solid-thin profiles typical of Low Pressure Turbines has been redesigned. Experimental data are presented for the validation of this new solution. Based on these data, a reduction of 72% in the SKEH and 20% in the mixed-out endwall losses can be obtained. CFD simulations are also presented to illustrate the effect of the new endwall on the secondary flows. Furthermore, an explanation of the flow mechanism that governs the reduction of the SKEH and the losses is given. Copyright © 2006 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel supersonic wind tunnel setup is proposed to enable the investigation of control on a normal shock wave. Previous experimental arrangements were found to suffer from shock instability. Wind tunnel tests with and without control have confirmed the capability of the new setup to stabilise a shock structure at a target position without changing the nature of the shock wave / boundary layer interaction flow at M∞ = 1.3 and M ∞ = 1.5. Flow visualisation and pressure measurements with the new setup have revealed detailed characteristics of shock wave / boundary layer interactions and a λ-shock structure as well as benefits of control in total drag reduction in the presence of 3D bump control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supersonic engine intakes operating supercritically feature shock wave / boundary layer interactions (SBLIs), which are conventionally controlled using boundary layer bleed. The momentum loss of bleed flow causes high drag, compromising intake performance. Micro-ramp sub-boundary layer vortex generators (SBVGs) have been proposed as an alternative form of flow control for oblique SBLIs in order to reduce the bleed requirement. Experiments have been conducted at Mach 2.5 to characterise the flow details on such devices and investigate their ability to control the interaction between an oblique shock wave and the naturally grown turbulent boundary layer on the tunnel floor. Micro-ramps of four sizes with heights ranging from 25% to 75% of the uncontrolled boundary layer thickness were tested. The flow over all sizes of microramp was found to be similar, featuring streamwise counter-rotating vortices which entrain high momentum fluid, locally reducing the boundary layer displacement thickness. When installed ahead of the shock interaction it was found that the positioning of the micro-ramps is of limited importance. Micro-ramps did not eliminate flow separation. However, the previously two-dimensional separation was broken up into periodic three-dimensional separation zones. The interaction length was reduced and the pressure gradient across the interaction was increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate predictions of combustor hot streak migration enable the turbine designer to identify high-temperature regions that can limit component life. It is therefore important that these predictions are achieved within the short time scales of a design process. This article compares temperature measurements of a circular hot streak through a turning duct and a research turbine with predictions using a three-dimensional Reynolds-averaged Navier-Stokes solver. It was found that the mixing length turbulence model did not predict the hot streak dissipation accurately. However, implementation of a very simple model of the free stream turbulence (FST) significantly improved the exit temperature predictions on both the duct and research turbine. One advantage of the simple FST model described over more complex alternatives is that no additional equations are solved. This makes the method attractive for design purposes, as it is not associated with any increase in computational time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A parametric set of velocity distributions has been investigated using a flat plate experiment. Three different diffusion factors and peak velocity locations were tested. These were designed to mimic the suction surfaces of Low Pressure (LP) turbine blades. Unsteady wakes, inherent in real turbomachinery flows, were generated using a moving bar mechanism. A turbulence grid generated a freestream turbulence level that is believed to be typical of LP turbines. Measurements were taken across a Reynolds number range of 50,000-220,000 at three reduced frequencies (0.314, 0.628, 0.942). Boundary layer traverses were performed at the nominal trailing edge using a Laser Doppler Anemometry system and hot-films were used to examine the boundary layer behaviour along the surface. For every velocity distribution tested, the boundary layer separated in the diffusing flow downstream of the peak velocity. The loss production is dominated by the mixing in the reattachment process, mixing in the turbulent boundary layer downstream of reattachment and the effects of the unsteady interaction between the wakes and the boundary layer. A sensitive balance governs the optimal location of peak velocity on the surface. Moving the velocity peak forwards on the blade was found to be increasingly beneficial when bubblegenerated losses are high, i.e. at low Reynolds number, at low reduced frequency and at high levels of diffusion. Copyright © 2008 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fluid dynamic operation of a valveless pulse combustor has been studied experimentally and numerically. Through phase-locked chemiluminescence and pressure measurements it is shown that mechanical energy is created periodically in the flame surface, with an efficiency of 1.6%. This mechanical energy leaves the pulse combustor through unsteady jets at the aerovalve inlet and the tailpipe exit stations. Two thermodynamically distinct flows are identified: a flow that is transported from inlet to exit and participates in combustion along the way, and a flow that is ingested and then ejected from the combustor without undergoing combustion. It is the latter of these two flows which has the greatest quantity of net work done on it. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

If the conventional steady flow combustor of a gas turbine is replaced with a device which achieves a pressure gain during the combustion process then the thermal efficiency of the cycle is raised. All such 'Pressure Gain Combustors' (e.g. PDEs, pulse combustors or wave rotors) are inherently unsteady flow devices. For such a device to be practically installed in a gas turbine it is necessary to design a downstream row of turbine vanes which will both accept the combustors unsteady exit flow and deliver a flow which the turbine rotor can accept. The design requirements of such a vane are that its exit flow both retains the maximum time-mean stagnation pressure gain (the pressure gain produced by the combustor is not lost) and minimises the amplitude of unsteadiness (reduces unsteadiness entering the downstream rotor). In this paper the exit of the pressure gain combustor is simulated with a cold unsteady jet. The first stage vane is simulated by a one-dimensional choked ejector nozzle with no turning. The time-mean and rms stagnation pressure at nozzle exit is measured. A number of geometric configurations are investigated and it is shown that the optimal geometry both maximizes time mean stagnation pressure gain (75% of that in the exit of the unsteady jet) and minimizes the amplitude of unsteadiness (1/3 of that in the primary jet). The structure of the unsteady flow within the ejector nozzle is determined computationally. Copyright © 2009 by J Heffer and R Miller.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A combined experimental and numerical study of a transonic shock wave in a parallel walled duct subject to downstream pressure perturbations has been conducted. Experiments and simulations have been carried out with a shock strength of M∞ = 1.4 for pressure perturbation frequencies in the range 16-90 Hz. The dynamics of unsteady shock motion and the interaction structure between the unsteady transonic shock wave and the turbulent tunnel floor boundary layer have been investigated. It is found that the (experimentally measured) dynamics of shock motion are generally well predicted by the computational scheme, especially at relatively low (≈ 40 Hz) frequencies. However, at higher frequencies (≈ 90 Hz), some subtle differences between the shock dynamics measured in experiments and those predicted by Computational Fluid Dynamics (CFD) exist. There is evidence from experiments that variations in shock / boundary layer interaction (SBLI) structure caused by shock motion are responsible for a change in the nature of shock dynamics between low and high frequency. In contrast, numerical results at low and high frequencies do not differ significantly and this suggests that the numerical method is not fully capturing the physics of the unsteady flow. Possible reasons for this are considered and a number of areas where CFD is unable to replicate experimental observations are identified. Significantly, CFD predicts changes in SBLI structure due to shock motion that are much too large and this may explain why none of the subtle effects on shock dynamics seen in experiments occur in CFD. Further work developing numerical methods that demonstrate a more realistic sensitivity of SBLI structure to unsteady shock motion is required. Copyright © 2010 by P.J.K. Bruce.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments were conducted investigating the interaction between a normal shock wave and a corner boundary layer in a constant area rectangular duct. Active corner suction and passive blowing were applied to manipulate the natural corner flows developing in the working section of the Cambridge University supersonic wind tunnel. In addition robust vane micro-vortex generators were applied to the corners of the working section. Experiments were conducted at Mach numbers of M∞=1.4 and 1.5. Flow visualisation was carried out through schlieren and surface oil flow, while static pressures were recorded via floor tappings. The results indicate that an interplay occurs between the corner flow and the centre line flow. It is believed that corner flow separation acts to induce a shock bifurcation, which in turn leads to a smearing of the adverse pressure gradient elsewhere. In addition the blockage effect from the corners was seen to result in a reacceleration of the subsonic post-shock flow. As a result manipulation of the corner regions allows a separated or attached centre line flow to be observed at the same Mach number. Copyright © 2010 by Babinsky, Burton, Bruce.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Replacing a conventional combustor in a gas turbine with one that produces a pressure gain could significantly raise cycle efficiency. For this efficiency gain to be achieved the exit flow from the combustor must be coupled to the downstream turbine such that the pressure gain produced by the combustor is retained and such that the turbine efficiency is maintained. The exit flow from a pressure gain combustor will often contain a high velocity unsteady jet. It has previously been proposed that ejectors should be used to harness the energy in the unsteady jet, this paper proposes combining an ejector with the first stage vane, producing a single compact component that preserves the combustion driven pressure gain and delivers a suitable flow to the turbine so that its efficiency is not compromised. This novel component has been experimentally tested for the first time. The performance of this first prototype design is found to be low due to high levels of loss generated by secondary flows. However possible mitigation strategies are discussed. It is shown that the unsteadiness at exit form the ejector-vane is reduced compared to the inlet flow. If a pulse combustor were incorporated into a gas turbine, it is unlikely that the level of unsteadiness experienced in a downstream rotor will be significantly larger that that due to the periodic passing of upstream wakes. Copyright © 2010 by Jonathan Heffer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Fort Canning Tunnel is the first road tunnel in Singapore to be built using the sprayed concrete lining (SCL) method. The major technical challenge of this was to construct a 15m wide tunnel by mining in soft ground under a shallow overburden of 3m to 9m. This paper describes the geotechnical investigations and monitoring controls for the safe and progressive execution of the works, such as soil investigations, trial forepoling works, surface settlement monitoring, tunnel settlement monitoring, face movement monitoring, and the observational approach to construction. The monitored field data showed the volume loss to range from 0.4% to 2.1%, and the observed surface settlement trough was found to agree well with the theoretical Gaussian trough. Other observations made include substantial surface settlements induced by the stress relief at and ahead of the tunnel face in spite of the forepoling umbrella, and the higher volume losses associated with higher overburden. Tunnel face movements were observed during installation of forepoling. These observations are of interest to engineers planning future SCL tunnels in similar conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate predictions of ground-borne vibration levels in the vicinity of an underground railway are greatly sought after in modern urban centres. Yet the complexity involved in simulating the underground environment means that it is necessary to make simplifying assumptions about this system. One such commonly made assumption is to ignore the effects of neighbouring tunnels, despite the fact that many underground railway lines consist of twin-bored tunnels, one for the outbound direction and one for the inbound direction. This paper presents a unique model for two tunnels embedded in a homogeneous, elastic fullspace. Each of these tunnels is subject to both known, dynamic train forces and dynamic cavity forces. The net forces acting on the tunnels are written as the sum of those tractions acting on the invert of a single tunnel, and those tractions that represent the motion induced by the neighbouring tunnel. By apportioning the tractions in this way, the vibration response of a two-tunnel system is written as a linear combination of displacement fields produced by a single-tunnel system. Using Fourier decomposition, forces are partitioned into symmetric and antisymmetric modenumber components to minimise computation times. The significance of the interactions between two tunnels is quantified by calculating the insertion gains, in both the vertical and horizontal directions, that result from the existence of a second tunnel. The insertion-gain results are shown to be localised and highly dependent on frequency, tunnel orientation and tunnel thickness. At some locations, the magnitude of these insertion gains is greater than 20 dB. This demonstrates that a high degree of inaccuracy exists in any surface vibration prediction model that includes only one of the two tunnels. This novel two-tunnel solution represents a significant contribution to the existing body of research into vibration from underground railways, as it shows that the second tunnel has a significant influence on the accuracy of vibration predictions for underground railways. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mandrel peel tests with mandrels or rollers of varying diameters have been carried out using Mylar backing of several thicknesses and a commercial synthetic acrylic adhesive. The results are critically compared with the numerical predictions of the peeling software package ICPeel. In addition, a finite element model of the mandrel peeling process has been completed which gives good agreement with experiment provided appropriate mechanical properties of adherend and adhesive are used which must include the effects of adherent constraint. The influence of the thickness of the backing is also considered and both experiment and analysis confirm that there is a backing thickness at which the peel force for a laminate of this sort will show a maximum. © 2010 Blackwell Publishing Ltd.