267 resultados para concrete buildings


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine the load at which FRPs debond from concrete beams using global-energy-balance-based fracture mechanics concepts, the single most important parameter is the fracture energy of the concrete-FRP interface, which is easy to define but difficult to determine. Debonding propagates in the narrow zone of concrete, between the FRP and the (tension) steel reinforcement bars in the beam, and the presence of nearby steel bars prevents the fracture process zone, which in concrete is normally extensive, from developing fully. The paper presents a detailed discussion of the mechanism of the FRP debonding, and shows that the initiation of debonding can be regarded as a Mode I (tensile) fracture in concrete, despite being loaded primarily in shear. It is shown that the incorporation of this fracture energy in the debonding model developed by the authors, details of which are presented elsewhere, gives predictions that match the test results reported in the literature. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of changes in vibration properties for global damage detection and monitoring of existing concrete structures has received great research attention in the last three decades. To track changes in vibration properties experimentally, structures have been artificially damaged by a variety of scenarios. However, this procedure does not represent realistically the whole design-life degradation of concrete structures. This paper presents experimental work on a set of damaged reinforced concrete beams due to different loading regimes to assess the sensitivity of vibration characteristics. Of the total set, three beams were subject to incremental static loading up to failure to simulate overloading, and two beams subject to 15 million loading cycles with varying amplitudes to produce an accelerated whole-life degradation scenario. To assess the vibration behaviour in both cases, swept sine and harmonic excitations were conducted at every damage level. The results show that resonant frequencies are not sensitive enough to damage due to cyclic loading, whereas cosh spectral and root mean square distances are more sensitive, yet more scattered. In addition, changes in non-linearity follow a softening trend for beams under incremental static loading, whilst they are significantly inconsistent for beams under cyclic loading. Amongst all examined characteristics, changes in modal stiffness are found to be most sensitive to damage and least scattered, but modal stiffness is tedious to compute due mainly to the difficulty of constructing restoring force surfaces from field measurements. © (2013) Trans Tech Publications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple mathematical model of stack ventilation flows in multi-compartment buildings is developed with a view to providing an intuitive understanding of the physical processes governing the movement of air and heat through naturally ventilated buildings. Rules of thumb for preliminary design can be ascertained from a qualitative examination of the governing equations of flow, which elucidate the relationships between 'core' variables - flow rates, air temperatures, heat inputs and building geometry. The model is applied to an example three-storey office building with an inlet plenum and atrium. An examination of the governing equations of flow is used to predict the behaviour of steady flows and to provide a number of preliminary design suggestions. It is shown that control of ventilation flows must be shared between all ventilation openings within the building in order to minimise the disparity in flow rates between storeys, and ensure adequate fresh air supply rates for all occupants. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a simplified mathematical model, a preliminary design strategy for steady stack ventilation in multi-storey atrium buildings is developed. By non-dimensionalising the governing equations of flow, two key dimensionless parameters are identified - a ventilation performance indicator, λ, and atrium enhancement parameter, E - which quantify the performance of the ventilation system and the effectiveness of the atrium in assisting flows. Analytical expressions are determined to inform the vent sizes needed to provide the desired balance between indoor air temperature, ventilation flow rate and heat inputs for any distribution of occupants within the building, and also to ensure unidirectional flow. Dimensionless charts for determining the required combination of design variables are presented with a view to informing first-order design guidance for naturally ventilated buildings. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aging concrete infrastructure in developed economies and more recently constructed concrete infrastructure in the developing world are frequently found to be deficient in structural strength relative to current needs. This can be attributed to a variety of factors including deterioration, construction defects, accidental damage, changes in understanding and failure to design for future loading requirements. Strengthening existing concrete structures can be a cost and carbon effective alternative to replacement. A competitive option for the strengthening of concrete slab-on-beam structures that are deficient in shear capacity is the U-wrapping of the down-stand beam portion of the shear span with externally bonded FRP fabric. While guidance exists for the strengthening of reinforced concrete by U-wrapping, the interaction between internal steel reinforcement, concrete and external FRP in the presence of a dominant diagonal shear crack is not well understood. An approach adopted in previous work has been to explore this interaction through conventional push-off testing. In conventional push-off testing, unlike in a beam, the shear plane is parallel to the direction of loading and perpendicular to the principal fibre orientation. This paper presents a novel push-off test variation in which the shear plane is inclined at 45° to the direction of loading and the principal fibre orientation. A variety of reinforcement ratios, FRP thicknesses and FRP end conditions are modelled. The implications of inclined cracking on debonding of FRP are investigated. The suitability and relevance of inclined push-off tests for further work in this area is also assessed. © 2013, NetComposite Limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study intends to evaluate the sensitivity of self-compacting concrete (SCC) mixtures, cast in two different laboratories of the European Union, with a focus on rheological parameters, mechanical characteristics and durability properties. Six SCC mixtures with different water-to-binder ratios and silica fume levels of cement replacement and two normally vibrated concrete (NVC) mixtures have been compared. It has been found that the reproducibility of similar mixtures is possible, when using different constituent materials that conform to the European Standards. Comparable rheological, mechanical and durability properties can be achieved. Open porosity and sorptivity appear to be more sensitive than chloride penetrability. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self Compacting Concrete (SCC) offers a wide variety of advantages during casting. Considering the worldwide uniformity of guidelines concerning the composition and casting instructions for the production of fresh SCC, there is a need to explore the reproducibility of similar self-compacting concrete batches between different countries. In the present study, the fresh properties of similar SCC batches produced in two different laboratories of the European Union are being compared and evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although self compacting concrete (SCC) is currently used in many countries, there is a fundamental lack of the intrinsic durability of the material itself. This article presents the outcomes from a research program on principal indicators that define the durability of SCC (sorptivity, porosity and chloride ion permeability) and compares these indicators with the corresponding parameters of conventional concrete. The results show, for the first time, that there is a correlation between the various durability indicators for the specific filler additives used in the mix designs incorporated in this paper. Such a correlation may be used to assess the durability of SCC without the need to rely on time consuming artificial weathering experimental procedures. © 2012 Elsevier Ltd. All rights reserved.