255 resultados para Pressure.
Resumo:
A laboratory-based methodology to launch cylindrical sand slugs at high velocities is developed. The methodology generates well-characterised soil ejecta without the need for detonation of an explosive; this laboratory-based tool thereby allows for the experimental investigation of the soil-structure events. The experimental set-up comprises a launcher with a cylindrical cavity and a piston to push out the sand slug. The apparatus is used to launch both dry and water-saturated sand slugs. High speed photography is used to characterise the evolution of the sand slugs after launch. We find that the diameter of the slugs remains unchanged, and the sand particles possess only an axial component of velocity. However, the sand particles have a uniform spatial gradient of axial velocity and this results in lengthening of the slugs as they travel towards their target. Thus, the density of the sand slugs remains spatially homogenous but decreases with increasing time. The velocity gradient is typically higher in the dry sand slugs than that of the water-saturated slugs. The pressure exerted by the slugs on a rigid-stationary target is measured by impacting the slugs against a direct impact Kolsky bar. After an initial high transient pressure, the pressure reduces to a value of approximately ρv 2 where ρ is the density of the impacting sand slug and v is the particle velocity. This indicates that loading due to the sand is primarily inertial in nature. The momentum transmitted to the Kolsky bar was approximately equal to the incident momentum of the sand slugs, regardless of whether they are dry or water-saturated. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
A novel temperature and pressure sensor based on a single film bulk acoustic resonator (FBAR) is designed. This FBAR support two resonant modes, which response opposite to the change of temperature. By sealed the back cavity of a back-trench membrane type FBAR with silicon wafer, an on-chip single FBAR sensor suitable for measuring temperature and pressure simultaneously is proposed. For unsealed device, the experimental results show that the first resonant mode has a temperature coefficient of frequency (TCF) of 69.5ppm/K, and the TCF of the second mode is -8.1ppm/K. After sealed the back trench, it can be used as a pressure sensor, the pressure coefficient of frequency (PCF) for the two resonant mode is -17.4ppm/kPa and -6.1 ppm/kPa respectively, both of them being more sensitive than other existing pressure sensors. © 2013 Trans Tech Publications Ltd, Switzerland.
Resumo:
The transition of a separated shear layer over a flat plate, in the presence of periodic wakes and elevated free-stream turbulence (FST), is numerically investigated using Large Eddy Simulation (LES). The upper wall of the test section is inviscid and specifically contoured to impose a streamwise pressure distribution over the flat plate to simulate the suction surface of a low-pressure turbine (LPT) blade. Two different distributions representative of a 'high-lift' and an 'ultra high-lift' turbine blade are examined. Results obtained from the current LES compare favourably with the extensive experimental data previously obtained for these configurations. The LES results are then used to further investigate the flow physics involved in the transition process.In line with experimental experience, the benefit of wakes and FST obtained by suppressing the separation bubble, is more pronounced in 'ultra high-lift' design when compared to the 'high-lift' design. Stronger 'Klebanoff streaks' are formed in the presence of wakes when compared to the streaks due to FST alone. These streaks promoted much early transition. The weak Klebanoff streaks due to FST continued to trigger transition in between the wake passing cycles.The experimental inference regarding the origin of Klebanoff streaks at the leading edge has been confirmed by the current simulations. While the wake convects at local free-stream velocity, its impression in the boundary layer in the form of streaks convects much slowly. The 'part-span' Kelvin-Helmholtz structures, which were observed in the experiments when the wake passes over the separation bubble, are also captured. The non-phase averaged space-time plots manifest that reattachment is a localized process across the span unlike the impression of global reattachment portrayed by phase averaging. © 2013 Elsevier Inc.
Resumo:
Intermediate pressure (IP) turbines in high bypass ratio civil aeroengines are characterized by a significant increase in radius and a low aspect ratio stator. Conventional aerodynamic designs for the IP turbine stator have had leading and trailing edges orthogonal to the hub and casing end walls. The IP turbine rotor, however, is stacked radially due to stress limits. These choices inevitably lead to a substantial gap between the IP stator and rotor at the outer diameter in a duct that is generally diffusing the flow due to the increasing radius. In this low Mach number study, the IP stator is redesigned, incorporating compound sweep so that the leading and trailing edges are no longer orthogonal to the end walls. Computational investigations showed that the nonorthogonal stator reduces the flow diffusion between the stator and rotor, which yields two benefits: The stator trailing edge velocity was reduced, as was the boundary layer growth on the casing end wall within the gap. Experimental measurements confirm that the turbine with the nonorthogonal stator has an increased efficiency by 0.49%, while also increasing the work output by 4.6%, at the design point. © 2014 by ASME.
Resumo:
The viability of boundary layer ingesting (BLI) engines for future aircraft propulsion is dependent on the ability to design robust, efficient engine fan systems for operation with continuously distorted inlet flow. A key step in this process is to develop an understanding of the specific mechanisms by which an inlet distortion affects the performance of a fan stage. In this paper, detailed full-annulus experimental measurements of the flow field within a low-speed fan stage operating with a continuous 60 deg inlet stagnation pressure distortion are presented. These results are used to describe the three-dimensional fluid mechanics governing the interaction between the fan and the distortion and to make a quantitative assessment of the impact on loss generation within the fan. A 5.3 percentage point reduction in stage total-to-total efficiency is observed as a result of the inlet distortion. The reduction in performance is shown to be dominated by increased loss generation in the rotor due to off-design incidence values at its leading edge, an effect that occurs throughout the annulus despite the localized nature of the inlet distortion. Increased loss in the stator row is also observed due to flow separations that are shown to be caused by whirl angle distortion at rotor exit. By addressing these losses, it should be possible to achieve improved efficiency in BLI fan systems. © 2013 by ASME.
Resumo:
Hydraulic fracturing in clayey soils can be triggered by either tensile or shear failure. In this paper, the physical meanings of various equations to predict fracture initiation pressure proposed in the past are discussed using the cavity expansion theory. In particular, when fracturing pressure is plotted against initial confining pressure, published laboratory test results as well as analytical models show a linear relationship. When the slope is close to 2, fracture is initiated by tensile failure of the clay, whereas when the slope is close to 1, it is initiated by shear failure of the clay. In this study, the analytical models, validated only on laboratory test data to date, were applied to unique data from field grouting work in which extensive soil fracturing was carried out to improve the mechanical characteristics of the soft silty clay underlying a bell tower in Venice, Italy. By a careful assessment of initial confining pressure in the field, the variation in recorded injection pressures with confining pressure was examined. Results suggest that the fractures at this site were likely to be initiated by shear failure of the clay, and the values were similar to what was predicted by the model with the shear failure criterion. © 2013 American Society of Civil Engineers.
Resumo:
In the first part of the paper steady two-phase flow predictions have been performed for the last stage of a model steam turbine to examine the influence of drag between condensed fog droplets and the continuous vapour phase. In general, droplets due to homogeneous condensation are small and thus kinematic relaxation provides only a minor contribution to the wetness losses. Different droplet size distributions have been investigated to estimate at which size inter-phase friction becomes more important. The second part of the paper deals with the deposition of fog droplets on stator blades. Results from several references are repeated to introduce the two main deposition mechanisms which are inertia and turbulent diffusion. Extensive postprocessing routines have been programmed to calculate droplet deposition due to these effects for a last stage stator blade in three-dimensions. In principle the method to determine droplet deposition by turbulent diffusion equates to that of Yau and Young [1] and the advantages and disadvantages of this relatively simple method are discussed. The investigation includes the influence of different droplet sizes on droplet deposition rates and shows that for small fog droplets turbulent diffusion is the main deposition mechanism. If the droplets size is increased inertial effects become more and more important and for droplets around 1 μm inertial deposition dominates. Assuming realistic droplet sizes the overall deposition equates to about 1% to 3% of the incoming wetness for the investigated guide vane at normal operating conditions. Copyright © 2013 by Solar Turbines Incorporated.
Resumo:
The complex three-dimensional two-phase flow in a low pressure steam turbine is investigated with comprehensive numerical flow simulations. In addition to the condensation process, which already takes place in the last stages of steam turbines, the numerical flow model is enhanced to consider the drag forces between the droplets and the vapour phase. The present paper shows the differences in the flow path of the phases and investigates the effect of an increasing droplet diameter. For the flow simulations a performance cluster is used because of the high effort for such multi-momentum two-phase flow calculations. In steam turbines the deposition of small water droplets on the stator blades or on parts of the casing is responsible for the formation of large coarse water droplets and these may cause additional dissipation as well as damage due to blade erosion. A method is presented that uses detailed CFD data to predict droplet deposition on turbine stator blades. This simulation method to detect regions of droplet deposition can help to improve the design of water removal devices. © Springer-Verlag Berlin Heidelberg 2013.
Resumo:
In steam power plants condensation already starts in the flow path of the low pressure part of the steam turbine, which leads to a complex three-dimensional two-phase flow. Wetness losses are caused due to thermodynamic and mechanical relaxation processes during condensation and droplet transport. The present investigation focuses on the unsteady effects due to rotor-stator interaction on the droplet formation process. Results of unsteady three dimensional flow simulations of a two-stage steam turbine are presented, whereby this is the first time that non-equilibrium condensation is considered in such simulations. The numerical approach is based on RANS equations, which are extended by a wet steam specific nucleation and droplet growth model. Despite the use of a high performance cluster the unsteady simulation has a considerably high simulation time of approximately 60 days by use of 48 CPUs. © Springer-Verlag Berlin Heidelberg 2012.
Resumo:
Results of numerical investigations of the wet steam flow in a three stage low pressure steam turbine test rig are presented. The test rig is a scale model of a modern steam turbine design and provides flow measurements over a range of operating conditions which are used for detailed comparisons with the numerical results. For the numerical analysis a modern CFD code with user defined models for specific wet steam modelling is used. The effect of different theoretical models for nucleation and droplet growth are examined. It is shown that heterogeneous condensation is highly dependent on steam quality and, in this model turbine with high quality steam, a homogeneous theory appears to be the best choice. The homogeneous theory gives good agreement between the test rig traverse measurements and the numerical results. The differences in the droplet size distribution of the three stage turbine are shown for different loads and modelling assumptions. The different droplet growth models can influence the droplet size by a factor of two. An estimate of the influence of unsteady effects is made by means of an unsteady two-dimensional simulation. The unsteady modelling leads to a shift of nucleation into the next blade row. For the investigated three stage turbine the influence due to wake chopping on the condensation process is weak but to confirm this conclusion further investigations are needed in complete three dimensions and on turbines with more stages. Copyright © 2011 by ASME.
Resumo:
The influence of non-equilibrium condensation on the flow field and performance of a three stage low pressure model steam turbine is examined using modern three dimensional CFD techniques. An equilibrium steam model and a non-equilibrium steam model, which accounts for both subcooling and condensation effects, are used, and have been verified by comparison with test data in an earlier publication [1]. The differences in the calculated flow field and turbine performance with these models show that the latent heat released during condensation influences both the thermodynamic and the aerodynamic performance of the turbine, leading to a change in inlet flow angles of about 5°. The calculated three dimensional flowfield is used to investigate the magnitude and distribution of the additional thermo-dynamic wetness loss arising from steam condensation under non-equilibrium flow conditions. Three simple methods are described to calculate this, and all show that this amounts to around 6.5% of the total losses at the design condition. At other load conditions the wetness losses change in magnitude and axial distribution in the turbine. © 2010 by ASME.
Resumo:
Two-phase computational fluid dynamics modelling is used to investigate the magnitude of different contributions to the wet steam losses in a three-stage model low pressure steam turbine. The thermodynamic losses (due to irreversible heat transfer across a finite temperature difference) and the kinematic relaxation losses (due to the frictional drag of the drops) are evaluated directly from the computational fluid dynamics simulation using a concept based on entropy production rates. The braking losses (due to the impact of large drops on the rotor) are investigated by a separate numerical prediction. The simulations show that in the present case, the dominant effect is the thermodynamic loss that accounts for over 90% of the wetness losses and that both the thermodynamic and the kinematic relaxation losses depend on the droplet diameter. The numerical results are brought into context with the well-known Baumann correlation, and a comparison with available measurement data in the literature is given. The ability of the numerical approach to predict the main wetness losses is confirmed, which permits the use of computational fluid dynamics for further studies on wetness loss correlations. © IMechE 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Resumo:
The three-stage low-pressure model steam turbine at the Institute of Thermal Turbomachinery and Machinery Laboratory (ITSM) was used to study the impact of three different steam inlet temperatures on the homogeneous condensation process and the resulting wetness topology. The droplet spectrum as well as the particle number concentration were measured in front of the last stage using an optical-pneumatic probe. At design load, condensation starts inside the stator of the second stage. A change in the steam inlet temperature is able to shift the location of condensation onset within the blade row up- or downstream and even into adjoining blade passages, which leads to significantly different local droplet sizes and wetness fractions due to different local expansion rates. The measured results are compared to steady three-dimensional computational fluid dynamics calculations. The predicted nucleation zones could be largely confirmed by the measurements. Although the trend of measured and calculated droplet size across the span is satisfactory, there are considerable differences between the measured and computed droplet spectrum and wetness fractions. © IMechE 2013 Reprints and permissions: sagepub.co.uk/ journalsPermissions.nav.