305 resultados para Parameter Optimization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The safety of the flights, and in particular conflict resolution for separation assurance, is one of the main tasks of Air Traffic Control. Conflict resolution requires decision making in the face of the considerable levels of uncertainty inherent in the motion of aircraft. We present a Monte Carlo framework for conflict resolution which allows one to take into account such levels of uncertainty through the use of a stochastic simulator. A simulation example inspired by current air traffic control practice illustrates the proposed conflict resolution strategy. Copyright © 2005 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a method for verifying seismic modelling parameters. It is equivalent to performing several iterations of unconstrained least-squares migration (LSM). The approach allows the comparison of modelling/imaging parameter configurations with greater confidence than simply viewing the migrated images. The method is best suited to determining discrete parameters but can be used for continuous parameters albeit with greater computational expense.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper focuses on the PSpice model of SiC-JFET element inside a SiCED cascode device. The device model parameters are extracted from the I-V and C-V characterization curves. In order to validate the model, an inductive test rig circuit is designed and tested. The switching loss is estimated both using oscilloscope and calorimeter. These results are found to be in good agreement with the simulated results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reducing energy consumption is a major challenge for energy-intensive industries such as papermaking. A commercially viable energy saving solution is to employ data-based optimization techniques to obtain a set of optimized operational settings that satisfy certain performance indices. The difficulties of this are: 1) the problems of this type are inherently multicriteria in the sense that improving one performance index might result in compromising the other important measures; 2) practical systems often exhibit unknown complex dynamics and several interconnections which make the modeling task difficult; and 3) as the models are acquired from the existing historical data, they are valid only locally and extrapolations incorporate risk of increasing process variability. To overcome these difficulties, this paper presents a new decision support system for robust multiobjective optimization of interconnected processes. The plant is first divided into serially connected units to model the process, product quality, energy consumption, and corresponding uncertainty measures. Then multiobjective gradient descent algorithm is used to solve the problem in line with user's preference information. Finally, the optimization results are visualized for analysis and decision making. In practice, if further iterations of the optimization algorithm are considered, validity of the local models must be checked prior to proceeding to further iterations. The method is implemented by a MATLAB-based interactive tool DataExplorer supporting a range of data analysis, modeling, and multiobjective optimization techniques. The proposed approach was tested in two U.K.-based commercial paper mills where the aim was reducing steam consumption and increasing productivity while maintaining the product quality by optimization of vacuum pressures in forming and press sections. The experimental results demonstrate the effectiveness of the method. © 2006 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is aimed at optimising the static performance of a high voltage SOI LDMOSFET. Starting with a conventional LDMOSFET, 2D and 3D numerical simulation models, able to accurately match datasheet values, have been developed. Moving from the original device, several design techniques have been investigated with the target of improving the breakdown voltage and the ON-state resistance. The considered design techniques are based on the modification of the doping profile of the drift region and the Superjunction design technique. The paper shows that a single step doping within the drift region is the best design choice for the considered device and is found to give a 24% improvement in the breakdown voltage and a 17% reduction of the ON-state resistance. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reinforcement techniques have been successfully used to maximise the expected cumulative reward of statistical dialogue systems. Typically, reinforcement learning is used to estimate the parameters of a dialogue policy which selects the system's responses based on the inferred dialogue state. However, the inference of the dialogue state itself depends on a dialogue model which describes the expected behaviour of a user when interacting with the system. Ideally the parameters of this dialogue model should be also optimised to maximise the expected cumulative reward. This article presents two novel reinforcement algorithms for learning the parameters of a dialogue model. First, the Natural Belief Critic algorithm is designed to optimise the model parameters while the policy is kept fixed. This algorithm is suitable, for example, in systems using a handcrafted policy, perhaps prescribed by other design considerations. Second, the Natural Actor and Belief Critic algorithm jointly optimises both the model and the policy parameters. The algorithms are evaluated on a statistical dialogue system modelled as a Partially Observable Markov Decision Process in a tourist information domain. The evaluation is performed with a user simulator and with real users. The experiments indicate that model parameters estimated to maximise the expected reward function provide improved performance compared to the baseline handcrafted parameters. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method for the optimal design of Functionally Graded Materials (FGM) is proposed in this paper. Instead of using the widely used explicit functional models, a feature tree based procedural model is proposed to represent generic material heterogeneities. A procedural model of this sort allows more than one explicit function to be incorporated to describe versatile material gradations and the material composition at a given location is no longer computed by simple evaluation of an analytic function, but obtained by execution of customizable procedures. This enables generic and diverse types of material variations to be represented, and most importantly, by a reasonably small number of design variables. The descriptive flexibility in the material heterogeneity formulation as well as the low dimensionality of the design vectors help facilitate the optimal design of functionally graded materials. Using the nature-inspired Particle Swarm Optimization (PSO) method, functionally graded materials with generic distributions can be efficiently optimized. We demonstrate, for the first time, that a PSO based optimizer outperforms classical mathematical programming based methods, such as active set and trust region algorithms, in the optimal design of functionally graded materials. The underlying reason for this performance boost is also elucidated with the help of benchmarked examples. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents experimental optimization of number and geometry of nanotube electrodes in a liquid crystal media from wavefront aberrations for realizing nanophotonic devices. The refractive-index gradient profiles from different nanotube geometries-arrays of one, three, four, and five-were studied along with wavefront aberrations using Zernike polynomials. The optimizations help the device to make application in the areas of voltage reconfigurable microlens arrays, high-resolution displays, wavefront sensors, holograms, and phase modulators. © 2012 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an agenda-based user simulator which has been extended to be trainable on real data with the aim of more closely modelling the complex rational behaviour exhibited by real users. The train-able part is formed by a set of random decision points that may be encountered during the process of receiving a system act and responding with a user act. A sample-based method is presented for using real user data to estimate the parameters that control these decisions. Evaluation results are given both in terms of statistics of generated user behaviour and the quality of policies trained with different simulators. Compared to a handcrafted simulator, the trained system provides a much better fit to corpus data and evaluations suggest that this better fit should result in improved dialogue performance. © 2010 Association for Computational Linguistics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimization of the bandwidth of a 2 km 50 μm multimode fiber at 850 nm is investigated theoretically and experimentally by steering a single spot, or two in antiphase spots across the core of the fiber in two dimensions using a ferroelectric liquid-crystal-based spatial light modulator. This method not only allows an optimal offset launch position to be chosen in situ but can also characterize the geometry and position of the core, identify defects, and measure the maximum differential mode delay. Its ability to selectively excite specific mode groups is also of relevance to mode-group division multiplexing. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superconductors are known for the ability to trap magnetic field. A thermally actuated magnetization (TAM) flux pump is a system that utilizes the thermal material to generate multiple small magnetic pulses resulting in a high magnetization accumulated in the superconductor. Ferrites are a good thermal material candidate for the future TAM flux pumps because the relative permeability of ferrite changes significantly with temperature, particularly around the Curie temperature. Several soft ferrites have been specially synthesized to reduce the cost and improve the efficiency of the TAM flux pump. Various ferrite compositions have been tested under a temperature variation ranging from 77K to 300K. The experimental results of the synthesized soft ferrites-Cu 0.3 Zn 0.7Ti 0.04Fe 1.96O 4, including the Curie temperature, magnetic relative permeability and the volume magnetization (emu/cm3), are presented in this paper. The results are compared with original thermal material, gadolinium, used in the TAM flux pump system.-Cu 0.3 Zn 0.7Ti 0.04 Fe 1.96O 4 holds superior characteristics and is believed to be a suitable material for next generation TAM flux pump. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most of the manual labor needed to create the geometric building information model (BIM) of an existing facility is spent converting raw point cloud data (PCD) to a BIM description. Automating this process would drastically reduce the modeling cost. Surface extraction from PCD is a fundamental step in this process. Compact modeling of redundant points in PCD as a set of planes leads to smaller file size and fast interactive visualization on cheap hardware. Traditional approaches for smooth surface reconstruction do not explicitly model the sparse scene structure or significantly exploit the redundancy. This paper proposes a method based on sparsity-inducing optimization to address the planar surface extraction problem. Through sparse optimization, points in PCD are segmented according to their embedded linear subspaces. Within each segmented part, plane models can be estimated. Experimental results on a typical noisy PCD demonstrate the effectiveness of the algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a preliminary study which describes and evaluates a multi-objective (MO) version of a recently created single objective (SO) optimization algorithm called the "Alliance Algorithm" (AA). The algorithm is based on the metaphorical idea that several tribes, with certain skills and resource needs, try to conquer an environment for their survival and to ally together to improve the likelihood of conquest. The AA has given promising results in several fields to which has been applied, thus the development of a MO variant (MOAA) is a natural extension. Here the MOAA's performance is compared with two well-known MO algorithms: NSGA-II and SPEA-2. The performance measures chosen for this study are the convergence and diversity metrics. The benchmark functions chosen for the comparison are from the ZDT and OKA families and the main classical MO problems. The results show that the three algorithms have similar overall performance. Thus, it is not possible to identify a best algorithm for all the problems; the three algorithms show a certain complementarity because they offer superior performance for different classes of problems. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic study of the parameter space of graphene chemical vapor deposition (CVD) on polycrystalline Cu foils is presented, aiming at a more fundamental process rationale in particular regarding the choice of carbon precursor and mitigation of Cu sublimation. CH 4 as precursor requires H 2 dilution and temperatures ≥1000 °C to keep the Cu surface reduced and yield a high-quality, complete monolayer graphene coverage. The H 2 atmosphere etches as-grown graphene; hence, maintaining a balanced CH 4/H 2 ratio is critical. Such balance is more easily achieved at low-pressure conditions, at which however Cu sublimation reaches deleterious levels. In contrast, C 6H 6 as precursor requires no reactive diluent and consistently gives similar graphene quality at 100-150 °C lower temperatures. The lower process temperature and more robust processing conditions allow the problem of Cu sublimation to be effectively addressed. Graphene formation is not inherently self-limited to a monolayer for any of the precursors. Rather, the higher the supplied carbon chemical potential, the higher the likelihood of film inhomogeneity and primary and secondary multilayer graphene nucleation. For the latter, domain boundaries of the inherently polycrystalline CVD graphene offer pathways for a continued carbon supply to the catalyst. Graphene formation is significantly affected by the Cu crystallography; i.e., the evolution of microstructure and texture of the catalyst template form an integral part of the CVD process. © 2012 American Chemical Society.