269 resultados para Dye lasers


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop an analytical theory of high-power passively mode-locked lasers with a slow absorber; the theory is valid at pulse energies well exceeding the saturation energy. We analyze the Haus modelocking master equation in the pulse-energy-domain representation, approximating the intensity profile function by a series in the vicinity of its peak value. We consider the high-power operation regime of subpicosecond blue-violet GaN mode-locked diode lasers, using the approach developed. © 2010 Springer Science+Business Media, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical model of superradiant pulse generation in semiconductor laser structures is developed. It is shown that a high optical gain of the medium can overcome phase relaxation and results in a built-up superradiant state (macroscopic dipole) in an assembly of electron - hole pairs on a time scale much longer than the characteristic polarisation relaxation time T2. A criterion of the superradiance generation is the condition acmT2 > 1, where α is the gain coefficient and cm is the speed of light in the medium. The theoretical model describes both qualitatively and quantitatively the author's own experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis is made of the conditions for the generation of superfluorescence pulses in an inverted medium of electron-hole pairs in a semiconductor. It is shown that strong optical amplification in laser semiconductor amplifiers characterised by αL ≫ 1 leads to suppression of phase re-laxation of the medium during the initial stages of evolution of superfluorescence and to formation of a macroscopic dipole from electron-hole pairs. Cooperative emission of radiation in this system results in generation of a powerful ultrashort pulse of the optical gain, which interacts coherently with the semiconductor medium. It is shown that coherent pulsations of the optical field, observed earlier by the author in Q-switched semiconductor lasers, are the result of superfluorescence and of the coherent interaction between the optical field and the medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis is made of the conditions for the generation of superfluorescence pulses in an inverted medium of electron-hole pairs in a semiconductor. It is shown that strong optical amplification in laser semiconductor amplifiers characterised by αL ≫ 1 (α is the small-signal gain and L is the amplifier length) leads to suppression of phase relaxation of the medium during the initial stages of evolution of superfluorescence and to formation of a macroscopic dipole from electron - hole pairs. Cooperative emission of radiation in this system results in generation of a powerful ultrashort pulse of the optical gain, which interacts coherently with the semiconductor medium. It is shown that coherent pulsations of the optical field, observed earlier by the author in Q-switched semiconductor lasers, are the result of superfluorescence and of the coherent interaction between the optical field and the medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basic ideas and current state of the art of ultrashort pulse generation by injection lasers are reviewed. All developed techniques, including gain switching, Q-switching, and mode-locking are described and compared. A simple theoretical treatment of a diode laser which emits picosecond light pulses is discussed. Some fundamental limits of the pulse parameters are discussed. Finally, compression of chirped optical pulses by optical fibres and the soliton effect is considered. © 1992 Chapman & Hall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breakdown of the optical spectrum of a train of picosecond pulses into components with a distance which exceeds kT (200 cm-1 at λ = 955 nm and T = 300 K) is discovered for the first time in an injection laser. The effect may be caused by combined interaction between photons and phonons, with collective excitations in the degraded electron-hole GaAs plasma, and with the stream of drifting carriers in the active medium of the laser.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have prepared single crystalline SnO2 and ZnO nanowires and polycrystalline TiO2 nanotubes (1D networks) as well as nanoparticle-based films (3D networks) from the same materials to be used as photoanodes for solid-state dye-sensitized solar cells. In general, superior photovoltaic performance can be achieved from devices based on 3-dimensional networks, mostly due to their higher short circuit currents. To further characterize the fabricated devices, the electronic properties of the different networks were measured via the transient photocurrent and photovoltage decay techniques. Nanowire-based devices exhibit extremely high, light independent electron transport rates while recombination dynamics remain unchanged. This indicates, contrary to expectations, a decoupling of transport and recombination dynamics. For typical nanoparticle-based photoanodes, the devices are usually considered electron-limited due to the poor electron transport through nanocrystalline titania networks. In the case of the nanowire-based devices, the system becomes limited by the organic hole transporter used. In the case of polycrystalline TiO2 nanotube-based devices, we observe lower transport rates and higher recombination dynamics than their nanoparticle-based counterparts, suggesting that in order to improve the electron transport properties of solid-state dye-sensitized solar cells, single crystalline structures should be used. These findings should aid future design of photoanodes based on nanowires or porous semiconductors with extended crystallinity to be used in dye-sensitized solar cells. © 2013 The Royal Society of Chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The power-conversion efficiency of solid-state dye-sensitized solar cells can be optimized by reducing the energy offset between the highest occupied molecular orbital (HOMO) levels of dye and hole-transporting material (HTM) to minimize the loss-in-potential. Here, we report a study of three novel HTMs with HOMO levels slightly above and below the one of the commonly used HTM 2,2′,7,7′- tetrakis(N,N-di-p-methoxyphenylamino)-9,9′- spirobifluorene (spiro-OMeTAD) to systematically explore this possibility. Using transient absorption spectroscopy and employing the ruthenium based dye Z907 as sensitizer, it is shown that, despite one new HTM showing a 100% hole-transfer yield, all devices based on the new HTMs performed worse than those incorporating spiro-OMeTAD. We further demonstrate that the design of the HTM has an additional impact on the electronic density of states present at the TiO2 electrode surface and hence influences not only hole- but also electron-transfer from the sensitizer. These results provide insight into the complex influence of the HTM on charge transfer and provide guidance for the molecular design of new materials. © 2013 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We fabricate double-wall carbon nanotube polymer composite saturable absorbers and demonstrate stable Q-switched and Mode-locked Thulium fiber lasers in a linear cavity and a ring cavity respectively. © 2011 Optical Society of America.