359 resultados para homopolar mode
Resumo:
Ultrafast passively mode-locked lasers with spectral tuning capability and high output power have widespread applications in biomedical research, spectroscopy and telecommunications [1,2]. Currently, the dominant technology is based on semiconductor saturable absorber mirrors (SESAMs) [2,3]. However, these typically have a narrow tuning range, and require complex fabrication and packaging [2,3]. A simple, cost-effective alternative is to use Single Wall Carbon Nanotubes (SWNTs) [4,10] and Graphene [10,14]. Wide-band operation is possible using SWNTs with a wide diameter distribution [5,10]. However, SWNTs not in resonance are not used and may contribute to unwanted insertion losses [10]. The linear dispersion of the Dirac electrons in graphene offers an ideal solution for wideband ultrafast pulse generation [10,15]. © 2011 IEEE.
Resumo:
We demonstrate passive mode-locking of a Raman fiber laser using a nanotube-based saturable absorber. The normal dispersion cavity generates highly-chirped 500 ps pulses that are compressed down to 2 ps, with 1.4 kW peak power. © 2011 OSA.
Resumo:
Climate change is becoming a serious issue for the construction industry, since the time scales at which climate change takes place can be expected to show a true impact on the thermal performance of buildings and HVAC systems. In predicting this future building performance by means of building simulation, the underlying assumptions regarding thermal comfort conditions and the related heating, ventilating and air conditioning (HVAC) control set points become important. This article studies the thermal performance of a reference office building with mixedmode ventilation in the UK, using static and adaptive thermal approaches, for a series of time horizons (2020, 2050 and 2080). Results demonstrate the importance of the implementation of adaptive thermal comfort models, and underpin the case for its use in climate change impact studies. Adaptive thermal comfort can also be used by building designers to make buildings more resilient towards change. © 2010 International Building Performance Simulation Association (IBPSA).
Resumo:
A Graphene-based saturable absorber is fabricated using wet chemistry techniques. We use it to passively mode-lock an Erbium doped fiber laser. ~500fs pulses are produced at 1560nm with a 5.2nm spectrum bandwidth. © 2010 Optical Society of America.