308 resultados para Semipermeable-membrane Devices


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been shown that the apparent benefits of a two-layer stacked SOI system, i.e. packing density and speed improvements, are less than could be expected in the context of a VLSI requirement [1]. In this project the stacked SOI system has been identified as having major application in the realization of integrated, mixed technology systems. Zone-melting-recrystallization (ZMR) with lasers and electron beams have been used to produce device quality SOI material and a small test-bed circuit has been designed as a demonstration of the feasibility of this approach. © 1988.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In low molar mass organosiloxane liquid-crystal materials the siloxane moieties micro-separate and aggregate in planes that could be regarded as an effective or virtual two-dimensional polymer backbone. We show that if a siloxane moiety is attached to a dichroic dye molecule, the micro-segregation of the siloxane moieties makes it possible to include a high concentration of the guest dye (more than 50%) in a host organosiloxane solution. This effect, combined with the temperature independent tilt angles achievable with ferroelectric organosiloxane liquid crystals, provide an ideal material for high-contrast surface-stabilised ferroelectric display devices. We present dyed ferroelectric materials with a temperature independent tilt angle greater than 42 degrees, a wide (room temperature to over 100°C) mesomorphic temperature range and a response time shorter than 500μs in the dye guest host mode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new thermal model based on Fourier series expansion method has been presented for dynamic thermal analysis on power devices. The thermal model based on the Fourier series method has been programmed in MATLAB SIMULINK and integrated with a physics-based electrical model previously reported. The model was verified for accuracy using a two-dimensional Fourier model and a two-dimensional finite difference model for comparison. To validate this thermal model, experiments using a 600V 50A IGBT module switching an inductive load, has been completed under high frequency operation. The result of the thermal measurement shows an excellent match with the simulated temperature variations and temperature time-response within the power module. ©2008 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hybrid semiconductor power device has been designed which combines IGBT switching and thyristor on-state characteristics. A single gate signal controls the switching and triggers the transitions between an IGBT and a thyristor mode of operation. This paper discusses aspects of the switching behaviour of this and of similar devices. Simulation results of an example structure are presented and conceivable developments in the switching characteristics of hybrid devices are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method has been used to design a power semiconductor device which combines IGBT switching and thyristor on-state characteristics. A single gate signal controls the switching and triggers the transitions between the IGBT and thyristor modes of operation. This paper discusses single-gated devices with multiple modes and aspects of their switching behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hybrid semiconductor power device has been designed which combines IGBT switching and thyristor on-state characteristics. A single gate signal controls the switching and triggers the transitions between an IGBT and a thyristor mode of operation. This paper discusses aspects of the switching behaviour of this and of similar devices. Simulation results of an example structure are presented and conceivable developments in the switching characteristics of hybrid devices are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the above entitled paper (ibid., vol. 55, no. 11, pp. 3001-3011), two errors were noticed after the paper went to press. The errors are corrected here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we review our recent experimental work on coherent and blue phase liquid crystal lasers.We will present results on thin-film photonic band edge lasing devices using dye-doped low molar mass liquid crystals in self-organised chiral nematic and blue phases. We show that high Q-factor lasers can be achieved in these materials and demonstrate that a single mode output with a very narrow line width can be readily achievable in well-aligned mono-domain samples. Further, we have found that the performance of the laser, i.e. the slope efficiency and the excitation threshold, are dependent upon the physical parameters of the low molar mass chiral nematic liquid crystals. Specifically, slope efficiencies greater than 60% could be achieved depending upon the materials used and the device geometry employed. We will discuss the important parameters of the liquid crystal host/dye guest materials and device configuration that are needed to achieve such high slope efficiencies. Further we demonstrate how the wavelength of the laser can be tuned using an in-plane electric field in a direction perpendicular to the helix axis via a flexoelectric mechanism as well as thermally using thermochromic effects. We will then briefly outline data on room temperature blue phase lasers and further show how liquid crystal/lenslet arrays have been used to demonstrate 2D laser emission of any desired wavelength. Finally, we present preliminary data on LED/incoherent pumping of RG liquid crystal lasers leading to a continuous wave output. © 2009 SPIE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we explore the possibility of using the equations of a well known compact model for CMOS transistors as a parameterized compact model for a variety of FET based nano-technology devices. This can turn out to be a practical preliminary solution for system level architectural researchers, who could simulate behaviourally large scale systems, while more physically based models become available for each new device. We have used a four parameter version of the EKV model equations and verified that fitting errors are similar to those when using them for standard CMOS FET transistors. The model has been used for fitting measured data from three types of FET nano-technology devices obeying different physics, for different fabrication steps, and under different programming conditions. © 2009 IEEE NANO Organizers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a technique which can be used to improve the accuracy of infrared (IR) surface temperature measurements made on MEMS (Micro-Electro-Mechanical- Systems) devices. The technique was used to thermally characterize a SOI (Silicon-On-Insulator) CMOS (Complementary Metal Oxide Semiconductor) MEMS thermal flow sensor. Conventional IR temperature measurements made on the sensor were shown to give significant surface temperature errors, due to the optical transparency of the SiO 2 membrane layers and low emissivity/high reflectivity of the metal. By making IR measurements on radiative carbon micro-particles placed in isothermal contact with the device, the accuracy of the surface temperature measurement was significantly improved. © 2010 EDA Publishing/THERMINIC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we demonstrate laser emission from emulsion-based polymer dispersed liquid crystals. Such lasers can be easily formed on single substrates with no alignment layers. Remarkably, it is shown that there can exist two radically different laser emission profiles, namely, photonic band-edge lasing and non-resonant random lasing. The emission is controlled by simple changes in the emulsification procedure. Low mixing speeds generate larger droplets that favor photonic band edge lasing with the requisite helical alignment produced by film shrinkage. Higher mixing speeds generate small droplets, which facilitate random lasing by a non-resonant scattering feedback process. Lasing thresholds and linewidth data are presented showing the potential of controllable linewidth lasing sources. Sequential and stacked layers demonstrate the possibility of achieving complex, simultaneous multi-wavelength and "white-light" laser output from a wide variety of substrates including glass, metallic, paper and flexible plastic. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).