262 resultados para Product counterfeiting
Resumo:
Establishing connectivity of products with real-time information about themselves can at one level provide accurate data, and at another, allow products to assess and influence their own destiny. In this way, the specification for an intelligent product is being built - one whose information content is permanently bound to its material content. This paper explores the impact of such development on supply chains, contrasting between simple and complex product supply chains. The Auto-ID project is on track to enable such connectivity between products and information using a single, open-standard, data repository for storage and retrieval of product information. The potential impact on the design and management of supply chains is immense. This paper provides an introduction to of some of these changes, demonstrating that by enabling intelligent products, Auto ID systems will be instrumental in driving future supply chains. The paper also identifies specific application areas for this technology in the product supply chain.
Resumo:
Product innovativeness is a primary contingent factor to be addressed for the development of flexible management for the front-end. However, due to complexity of this early phase of the innovation process, the definition of which attributes to customise is critical to support a contingent approach. Therefore, this study investigates front-end attributes that need to be customised to permit effective management for different degrees of innovation. To accomplish this aim, a literature review and five case studies were performed. The findings highlighted the front-end strategic and operational levels as factors influencing the front-end attributes related to product innovativeness. In conclusion, this study suggests that two front-end attributes should be customised: development activities and decision-making approach. Copyright © 2011 Inderscience Enterprises Ltd.
Resumo:
In this competitive globalizing scenario, manufacturers are adopting a strategy of bundling products and services into an integrated solution to create sustainable competitive advantage. Servitizing manufacturers are increasingly transforming their processes and practices to build product-service systems (PSS). During this transformation they require substantial support to face stringent challenges. Research in the PSS domain is heading towards the development of a design theory and methodology that facilitates the systematic creation of viable PSS conceptual designs. In this paper, various proposed design methods are reviewed and research gaps are summarized. Primarily, it has been observed that the importance of the capabilities of the stakeholders involved in designing PSS has not been noted in the proposed methods. Regarding this capability view point, a framework for designing PSS has been proposed. This framework highlights the important features required in designing PSS such as co-creation, responsibilities and competences. Every step in the framework has been explained with a case study involving laser systems used for manufacturing cutting operation.
Resumo:
We study three contractual arrangements—co-development, licensing, and co-development with opt-out options—for the joint development of new products between a small and financially constrained innovator firm and a large technology company, as in the case of a biotech innovator and a major pharma company. We formulate our arguments in the context of a two-stage model, characterized by technical risk and stochastically changing cost and revenue projections. The model captures the main disadvantages of traditional co-development and licensing arrangements: in co-development the small firm runs a risk of running out of capital as future costs rise, while licensing for milestone and royalty (M&R) payments, which eliminates the latter risk, introduces inefficiency, as profitable projects might be abandoned. Counter to intuition we show that the biotech's payoff in a licensing contract is not monotonically increasing in the M&R terms. We also show that an option clause in a co-development contract that gives the small firm the right but not the obligation to opt out of co-development and into a pre-agreed licensing arrangement avoids the problems associated with fully committed co-development or licensing: the probability that the small firm will run out of capital is greatly reduced or completely eliminated and profitable projects are never abandoned.
Resumo:
The 'optimal' or 'best' design process may be the shortest or cheapest process, or the one that leads to a particularly desirable product, or to a reliable and maintainable product, or to a manufacturable product, or some combination of all of these. It is likely to satisfy the aspirations of the organisation to invest an appropriate amount of resource in the development of a specific new market opportunity, set in the context of longer-term business goals. This paper describes the progress made in over ten years of research on process modelling undertaken at the Cambridge Engineering Design Centre to identify an 'optimal' design process with which to develop an 'adequate' product.
Resumo:
Reusing steel and aluminum components would reduce the need for new production, possibly creating significant savings in carbon emissions. Currently, there is no clearly defined set of strategies or barriers to enable assessment of appropriate component reuse; neither is it possible to predict future levels of reuse. This work presents a global assessment of the potential for reusing steel and aluminum components. A combination of top-down and bottom-up analyses is used to allocate the final destinations of current global steel and aluminum production to product types. A substantial catalogue has been compiled for these products characterizing key features of steel and aluminum components including design specifications, requirements in use, and current reuse patterns. To estimate the fraction of end-of-life metal components that could be reused for each product, the catalogue formed the basis of a set of semistructured interviews with industrial experts. The results suggest that approximately 30% of steel and aluminum used in current products could be reused. Barriers against reuse are examined, prompting recommendations for redesign that would facilitate future reuse.
Resumo:
Change propagates, potentially affecting many aspects of a design and requiring much rework to implement. This article introduces a cross-domain approach to decompose a design and identify possible change propagation linkages, complemented by an interactive tool that generates dynamic checklists to assess change impact. The approach considers the information domains of requirements, functions, components, and the detail design process. Laboratory experiments using a vacuum cleaner suggest that cross-domain modelling helps analyse a design to create and capture the information required for change prediction. Further experiments using an electronic product show that this information, coupled with the interactive tool, helps to quickly and consistently assess the impact of a proposed change. © 2012 Springer-Verlag London Limited.
Resumo:
Are there any benefits in allowing orders and products to be able to manage their own progress through a supply chain? The notion of associating (and even embedding) information management and reasoning capabilities with a physical product has been discussed for over ten years now. This talk will review the notions of product intelligence and examine the rationales for these models and the practicality of their implementation. Both theoretical and practical issues associated with product intelligence will be examined referencing a number of trial deployments in manufacturing, logistics and aerospace equipment servicing. © 2012 IFAC.
Resumo:
Papermaking is considered as an energy-intensive industry partly due to the fact that the machinery and procedures have been designed at the time when energy was both cheap and plentiful. A typical paper machine manufactures a variety of different products (grades) which impose variable per-unit raw material and energy costs to the mill. It is known that during a grade change operation the products are not market-worthy. Therefore, two different production regimes, i.e. steady state and grade transition can be recognised in papermaking practice. Among the costs associated with paper manufacture, the energy cost is 'more variable' due to (usually) day-to-day variations of the energy prices. Moreover, the production of a grade is often constrained by customer delivery time requirements. Given the above constraints and production modes, the product scheduling technique proposed in this paper aims at optimising the sequence of orders in a single machine so that the cost of production (mainly determined by the energy) is minimised. Simulation results obtained from a commercial board machine in the UK confirm the effectiveness of the proposed method. © 2011 IFAC.