280 resultados para PASSIVE-MATRIX DISPLAY
Resumo:
We have fabricated an ultra-compact 4×4 optical matrix on InP/InGaAsP material. 1×4 MMI couplers and TIR mirrors are employed to produce a compact 1×2 mm2 device. A CH4/H2/O2 RIE dry etch process has been used to realize two-level dry etching: deep-etch for both the MMI couplers and the mirrors and shallow-etch for the rest of the routing waveguides. It was found that a metal/dielectric bilayer mask is essential for multi-dry-etch processes and high profile verticality. We have found a Ti intermediate mask for the deep-etch process which is removable by SF6 dry-etch before the following shallow process. Dry-etch removal of the intermediate mask is necessary to protect the deep-etched mirror sidewall.
Resumo:
In the field of flat panel displays, the current leading technology is the Active Matrix liquid Crystal Display; this uses a-Si:H based thin film transistors (TFTs) as the switching element in each pixel. However, under gate bias a-Si:H TFTs suffer from instability, as is evidenced by a shift in the gate threshold voltage. The shift in the gate threshold voltage is generally measured from the gate transfer characteristics, after subjecting the TFT to prolonged gate bias. However, a major drawback of this measurement method is that it cannot distinguish whether the shift is caused by the change in the midgap states in the a-Si:H channel or by charge trapping in the gate insulator. In view of this, we have developed a capacitance-voltage (C-V) method to measure the shift in threshold voltage. We employ Metal-Insulator-Semiconductor (MIS) structures to investigate the threshold voltage shift as they are simpler to fabricate than TFTs. We have investigated a large of number Metal/a-Si:H/Si3N4/Si+n structures using our C-V technique. From, the C-V data for the MIS structures, we have found that the relationship between the thermal energy and threshold voltage shift is similar to that reported by Wehrspohn et. al in a-Si:H TFTs (J Appl. Phys, 144, 87, 2000). The a-Si:H and Si3N4 layers were grown using the radio-frequency plasma-enhanced chemical vapour deposition technique.
Resumo:
In low molar mass organosiloxane liquid-crystal materials the siloxane moieties micro-separate and aggregate in planes that could be regarded as an effective or virtual two-dimensional polymer backbone. We show that if a siloxane moiety is attached to a dichroic dye molecule, the micro-segregation of the siloxane moieties makes it possible to include a high concentration of the guest dye (more than 50%) in a host organosiloxane solution. This effect, combined with the temperature independent tilt angles achievable with ferroelectric organosiloxane liquid crystals, provide an ideal material for high-contrast surface-stabilised ferroelectric display devices. We present dyed ferroelectric materials with a temperature independent tilt angle greater than 42 degrees, a wide (room temperature to over 100°C) mesomorphic temperature range and a response time shorter than 500μs in the dye guest host mode.
Resumo:
All-optical routing of 2.5Gbit/s WDM signals across two cascaded Optical Cross Connects(OXCs) with a penalty of only 0.6dB has been demonstrated using tuneable wavelength converters and a passive WDM router.
Resumo:
Large Eddy Simulation (LES) and a novel k -l based hybrid LES/RANS approach have been applied to simulate a conjugate heat transfer problem involving flow over a matrix of surface mounted cubes. In order to assess the capability and reliability of the newly developed k -l based hybrid LES/RANS, numerical results are compared with new LES and existing RANS results. Comparisons include mean velocity profiles, Reynolds stresses and conjugate heat transfer. As well as for hybrid LES/RANS validation purposes, the LES results are used to gain insights into the complex flow physics and heat transfer mechanisms. Numerical simulations show that the hybrid LES/RANS approach is effective. Mean and instantaneous fluid temperatures adjacent to the cube surface are found to strongly correlate with flow structure. Although the LES captures more mean velocity field complexities, broadly time averaged wake temperature fields are found similar for the LES and hybrid LES/RANS. Copyright © 2005 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
This paper will report on the production, dimensional control, and characterization of arrays of cold-cathode field emitters based on multiwall carbon nanotubes, suitable for use in large-area field-emission-based displays.
Resumo:
Amorphous silicon thin-film transistors and pixel driver circuits for organic light-emitting diode displays have been fabricated on plastic substrates. Pixel circuits demonstrate sufficient current delivery and long-term stable operation. © 2005 IEEE.
Resumo:
Stereoscopic displays present different images to the two eyes and thereby create a compelling three-dimensional (3D) sensation. They are being developed for numerous applications including cinema, television, virtual prototyping, and medical imaging. However, stereoscopic displays cause perceptual distortions, performance decrements, and visual fatigue. These problems occur because some of the presented depth cues (i.e., perspective and binocular disparity) specify the intended 3D scene while focus cues (blur and accommodation) specify the fixed distance of the display itself. We have developed a stereoscopic display that circumvents these problems. It consists of a fast switchable lens synchronized to the display such that focus cues are nearly correct. The system has great potential for both basic vision research and display applications. © 2009 Optical Society of America.
Metal-polymer composite sensors for volatile organic compounds: Part 1. Flow-through chemi-resistors
Resumo:
A new type of chemi-resistor based on a novel metal-polymer composite is described. The composite contains nickel particles with sharp nano-scale surface features, which are intimately coated by the polymer matrix so that they do not come into direct physical contact. No conductive chains of filler particles are formed even at loadings above the percolation threshold and the composite is intrinsically insulating. However, when subjected to compression the composite becomes conductive, with sample resistance falling from ≥ 1012 Ω to < 0.01 Ω. The composite can be formed into insulating granules, which display similar properties to the bulk form. A bed of granules compressed between permeable frits provides a porous structure with a start resistance set by the degree of compression while the granules are free to swell when exposed to volatile organic compounds (VOCs). The granular bed presents a large surface area for the adsorption of VOCs from the gas stream flowing through it. The response of this system to a variety of vapours has been studied for two different sizes of the granular bed and for different matrix polymers. Large responses, ΔR/R0 ≥ 10^7, are observed when saturated vapours are passed through the chemi-resistor. Rapid response allows real time sensing of VOCs and the initial state is recovered in a few seconds by purging with an inert gas stream. The variation in response as a function of VOC concentration is determined.
Resumo:
Stereoscopic displays present different images to the two eyes and thereby create a compelling three-dimensional (3D) sensation. They are being developed for numerous applications including cinema, television, virtual prototyping, and medical imaging. However, stereoscopic displays cause perceptual distortions, performance decrements, and visual fatigue. These problems occur because some of the presented depth cues (i.e., perspective and binocular disparity) specify the intended 3D scene while focus cues (blur and accommodation) specify the fixed distance of the display itself. We have developed a stereoscopic display that circumvents these problems. It consists of a fast switchable lens synchronized to the display such that focus cues are nearly correct. The system has great potential for both basic vision research and display applications.