231 resultados para Motion pictures.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A small-strain two-dimensional discrete dislocation plasticity (DDP) framework is developed wherein dislocation motion is caused by climb-assisted glide. The climb motion of the dislocations is assumed to be governed by a drag-type relation similar to the glide-only motion of dislocations: such a relation is valid when vacancy kinetics is either diffusion limited or sink limited. The DDP framework is employed to predict the effect of dislocation climb on the uniaxial tensile and pure bending response of single crystals. Under uniaxial tensile loading conditions, the ability of dislocations to bypass obstacles by climb results in a reduced dislocation density over a wide range of specimen sizes in the climb-assisted glide case compared to when dislocation motion is only by glide. A consequence is that, at least in a single slip situation, size effects due to dislocation starvation are reduced. By contrast, under pure bending loading conditions, the dislocation density is unaffected by dislocation climb as geometrically necessary dislocations (GNDs) dominate. However, climb enables the dislocations to arrange themselves into lower energy configurations which significantly reduces the predicted bending size effect as well as the amount of reverse plasticity observed during unloading. The results indicate that the intrinsic plasticity material length scale associated with GNDs is strongly affected by thermally activated processes and will be a function of temperature. © 2013 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is about detecting bipedal motion in video sequences by using point trajectories in a framework of classification. Given a number of point trajectories, we find a subset of points which are arising from feet in bipedal motion by analysing their spatio-temporal correlation in a pairwise fashion. To this end, we introduce probabilistic trajectories as our new features which associate each point over a sufficiently long time period in the presence of noise. They are extracted from directed acyclic graphs whose edges represent temporal point correspondences and are weighted with their matching probability in terms of appearance and location. The benefit of the new representation is that it practically tolerates inherent ambiguity for example due to occlusions. We then learn the correlation between the motion of two feet using the probabilistic trajectories in a decision forest classifier. The effectiveness of the algorithm is demonstrated in experiments on image sequences captured with a static camera, and extensions to deal with a moving camera are discussed. © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies of Erebus volcano's active lava lake have shown that many of its observable properties (gas composition, surface motion and radiant heat output) exhibit cyclic behaviour with a period of ~10 min. We investigate the multi-year progression of the cycles in surface motion of the lake using an extended (but intermittent) dataset of thermal infrared images collected by the Mount Erebus Volcano Observatory between 2004 and 2011. Cycles with a period of ~5-18 min are found to be a persistent feature of the lake's behaviour and no obvious long-term change is observed despite variations in lake level and surface area. The times at which gas bubbles arrive at the lake's surface are found to be random with respect to the phase of the motion cycles, suggesting that the remarkable behaviour of the lake is governed by magma exchange rather than an intermittent flux of gases from the underlying magma reservoir. © 2014 The Authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional approaches to upper body pose estimation using monocular vision rely on complex body models and a large variety of geometric constraints. We argue that this is not ideal and somewhat inelegant as it results in large processing burdens, and instead attempt to incorporate these constraints through priors obtained directly from training data. A prior distribution covering the probability of a human pose occurring is used to incorporate likely human poses. This distribution is obtained offline, by fitting a Gaussian mixture model to a large dataset of recorded human body poses, tracked using a Kinect sensor. We combine this prior information with a random walk transition model to obtain an upper body model, suitable for use within a recursive Bayesian filtering framework. Our model can be viewed as a mixture of discrete Ornstein-Uhlenbeck processes, in that states behave as random walks, but drift towards a set of typically observed poses. This model is combined with measurements of the human head and hand positions, using recursive Bayesian estimation to incorporate temporal information. Measurements are obtained using face detection and a simple skin colour hand detector, trained using the detected face. The suggested model is designed with analytical tractability in mind and we show that the pose tracking can be Rao-Blackwellised using the mixture Kalman filter, allowing for computational efficiency while still incorporating bio-mechanical properties of the upper body. In addition, the use of the proposed upper body model allows reliable three-dimensional pose estimates to be obtained indirectly for a number of joints that are often difficult to detect using traditional object recognition strategies. Comparisons with Kinect sensor results and the state of the art in 2D pose estimation highlight the efficacy of the proposed approach.