272 resultados para Gas condensates


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Letter, the rarefaction and roughness effects on the heat transfer process in gas microbearings are investigated. A heat transfer model is developed by introducing two-variable Weierstrass-Mandelbrot (W-M) function with fractal geometry. The heat transfer problem in the multiscale self-affine rough microbearings at slip flow regime is analyzed and discussed. The results show that rarefaction has more significant effect on heat transfer in rough microbearings with lower fractal dimension. The negative influence of roughness on heat transfer found to be the Nusselt number reduction. The heat transfer performance can be optimized with increasing fractal dimension of the rough surface. © 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The universal exhaust gas oxygen (UEGO) sensor is a well-established device which was developed for the measurement of relative air fuel ratio in internal combustion engines. There is, however, little information available which allows for the prediction of the UEGO's behaviour when exposed to arbitrary gas mixtures, pressures and temperatures. Here we present a steady-state model for the sensor, based on a solution of the Stefan-Maxwell equation, and which includes a momentum balance. The response of the sensor is dominated by a diffusion barrier, which controls the rate of diffusion of gas species between the exhaust and a cavity. Determination of the diffusion barrier characteristics, especially the mean pore size, porosity and tortuosity, is essential for the purposes of modelling, and a measurement technique based on identification of the sensor pressure giving zero temperature sensitivity is shown to be a convenient method of achieving this. The model, suitably calibrated, is shown to make good predictions of sensor behaviour for large variations of pressure, temperature and gas composition. © 2012 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas turbine engine performance requires effective and reliable internal cooling over the duty cycle of the engine. Life predictions for rotating components subject to the main gas path temperatures are vital. This demands increased precision in the specification of the internal air system flows which provide turbine stator well cooling and sealing. This in turn requires detailed knowledge of the flow rates through rim seals and interstage labyrinth seals. Knowledge of seal movement and clearances at operating temperatures is of great importance when prescribing these flows. A test facility has been developed at the University of Sussex, incorporating a two stage turbine rated at 400 kW with an individual stage pressure ratio of 1.7:1. The mechanical design of the test facility allows internal cooling geometry to be rapidly re-configured, while cooling flow rates of between 0.71 CW, ENT and 1.46 C W, ENT, may be set to allow ingress or egress dominated cavity flows. The main annulus and cavity conditions correspond to in cavity rotational Reynolds numbers of 1.71×106< Reφ <1.93×106. Displacement sensors have been used to establish hot running seal clearances over a range of stator well flow conditions, allowing realistic flow rates to be calculated. Additionally, gas seeding techniques have been developed, where stator well and main annulus flow interactions are evaluated by measuring changes in gas concentration. Experiments have been performed which allow rim seal and re-ingestion flows to be quantified. It will be shown that this work develops the measurement of stator well cooling flows and provides data suitable for the validation of improved thermo-mechanical and CFD codes, beneficial to the engine design process. Copyright © 2011 by Rolls-Royce plc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficiency and overall quality of a laser cutting operation is highly dependent on the assist gas parameters. The desire to cut thicker material has led to the observation of small process operating windows for thicker sections. The gas jet delivery and subsequent dynamical behaviour have significant effects on the cutting operation as the sample thickness increases. To date, few workers have examined the dynamical behaviour of the gas jet. This paper examines the characteristics of oxygen gas jets during CO2 laser cutting of steel. Particular emphasis is placed on the mass transfer effects that are operating within the kerf. Oxygen concentration levels within a model kerf are measured for various laser cutting set-ups. The results show a substantial reduction in oxygen concentration within the kerf. A system for oxygen concentration maintenance is described and cutting results from this system are compared with conventional techniques for cutting steels in the range 10 to 20mm thick. A theoretical analysis of turbulent mass transfer within a kerf is presented and compared with experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To extract gas from hydrate reservoirs, it has to be dissociated in situ. This endothermic dissociation process absorbs heat energy from the formation and pore fluid. The heat transfer governs the dissociation rate, which is proportional to the difference between the actual temperature and the equilibrium temperature. This study compares three potential gas production schemes from hydrate-bearing soil, where the radial heat transfer is governing. Cylindrical samples with 40% pore-filling hydrate saturation were tested. The production tests were carried out over 90 min by dissociating the hydrate from a centered miniature wellbore, by either lowering the pressure to 6, 4, or 6 MPa with simultaneous heating of the wellbore to 288 K. All tests were replicated by a numerical simulation. With additional heating at the same wellbore pressure, the gas production from hydrates could, on average, be increased by 1.8 and 3.6 times in the simulation and experiments, respectively. If the heat influx from the outer boundary is limited, a simulation showed that the specific heat of the formation is rapidly used up when the wellbore is only depressurized and not heated. © 2012 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate modeling of gas microflow is crucial for the microfluidic devices in MEMS. Gas microflows through these devices are often in the slip and transition flow regimes, characterized by the Knudsen number of the order of 10-2∼100. An increasing number of researchers now dedicate great attention to the developments in the modeling of non-equilibrium boundary conditions in the gas microflows, concentrating on the slip model. In this review, we present various slip models obtained from different theoretical, computational and experimental studies for gas microflows. Correct descriptions of the Knudsen layer effect are of critical importance in modeling and designing of gas microflow systems and in predicting their performances. Theoretical descriptions of the gas-surface interaction and gas-surface molecular interaction models are introduced to describe the boundary conditions. Various methods and techniques for determination of the slip coefficients are reviewed. The review presents the considerable success in the implementation of various slip boundary conditions to extend the Navier-Stokes (N-S) equations into the slip and transition flow regimes. Comparisons of different values and formulations of the first- and second-order slip coefficients and models reveal the discrepancies arising from different definitions in the first-order slip coefficient and various approaches to determine the second-order slip coefficient. In addition, no consensus has been reached on the correct and generalized form of higher-order slip expression. The influences of specific effects, such as effective mean free path of the gas molecules and viscosity, surface roughness, gas composition and tangential momentum accommodation coefficient, on the hybrid slip models for gas microflows are analyzed and discussed. It shows that although the various hybrid slip models are proposed from different viewpoints, they can contribute to N-S equations for capturing the high Knudsen number effects in the slip and transition flow regimes. Future studies are also discussed for improving the understanding of gas microflows and enabling us to exactly predict and actively control gas slip. © Springer-Verlag 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the global flame dynamics of a model annular gas turbine combustor undergoing strong self-excited circumferential instabilities is presented. The combustor consisted of either 12, 15 or 18 turbulent premixed bluff-body flames arranged around an annulus of fixed circumference so that the effect of flame separation distance, S, on the global heat release dynamics could be investigated. Reducing S was found to produce both an increase in the resonant frequency and the limit-cycle amplitudes of pressure and heat release for the same equivalence ratio. The phase-averaged global heat release, obtained from high-speed OH- chemiluminescence imaging from above, showed that these changes are caused by large-scale modifications to the flame structure around the annulus. For the largest S studied (12 flame configuration) the azimuthal instability produced a helical-like global heat release structure for each flame. When S was decreased, large-scale merging or linking between adjacent flames occurred spanning approximately half of the annulus with the peak heat release concentrated at the outer annular wall. The circumferential nature of the instability was evident from both the pressure measurements and the phase-averaged OH- chemiluminescence showing the phase of the heat release on either side of the annulus to be ≈180°apart and spinning in the counter clockwise direction. Both spinning and standing modes were found but only spinning modes are considered in this paper. To the best of the authors knowledge, these are the first experiments to provide a phase-averaged picture of self-excited azimuthal instabilities in a laboratory-scale annular combustor relevant to gas turbines. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flow field of a lab-scale model gas turbine swirl burner was characterised using particle imaging velocimetry (PIV) at atmospheric condition. The swirl burner consists of an axial swirler, a twin-fluid atomizer and a quartz tube as combustor wall. The main non-reacting swirling air flow without spray was compared to swirl flow with spray under unconfined and enclosed conditions. The introduction of liquid fuel spray changes the flow field of the main swirling air flow at the burner outlet where the radial velocity components are enhanced. Under reacting conditions, the enclosure generates a corner recirculation zone that intensifies the strength of the radial velocity. Comparison of the flow fields with a spray flame using diesel and palm biodiesel shows very similar flow fields. The flow field data can be used as validation target for swirl flame modeling. © (2013) Trans Tech Publications, Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Construction of geotechnical structures produces various environmental impacts. These include depletion of limited natural resources, generation of wastes and harmful substances during material productions and construction, ineffective usage of energy during processing of raw materials into construction materials, and emissions of unwanted gasses during transportation of materials and usage of equipments. With increasing interests in sustainability at the global scale, there is a need to develop a methodology that can assess environmental impacts at such scale for geotechnical construction. Using embodied energy and gas emission, quantitative measures of environmental impact are evaluated using a case study of a new high speed railway line construction in the UK. Based on the results, the keys to energy savings are (a) to optimise the usage of materials with high embodied energy intensity value (b) to optimise the transportation network and logistics for processes using primarily low embodied energy intensity materials and (c) to reuse as much materials on-site as possible to minimise the quantity of spoils or distance to disposal sites. The evaluated embodied energy and embodied carbon values are compared to those of other types of structures and of other activities and carbon tax values. Such comparisons can be used to discuss among various interested parties (clients, contractors, consultants, policy makers, etc) to make the construction industry more energy efficient. © Springer Science+Business Media B.V. 2011.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key challenge in achieving good transient performance of highly boosted engines is the difficulty of accelerating the turbocharger from low air flow conditions (“turbo lag”). Multi-stage turbocharging, electric turbocharger assistance, electric compressors and hybrid powertrains are helpful in the mitigation of this deficit, but these technologies add significant cost and integration effort. Air-assist systems have the potential to be more cost-effective. Injecting compressed air into the intake manifold has received considerable attention, but the performance improvement offered by this concept is severely constrained by the compressor surge limit. The literature describes many schemes for generating the compressed gas, often involving significant mechanical complexity and/or cost. In this paper we demonstrate a novel exhaust assist system in which a reservoir is charged during braking. Experiments have been conducted using a 2.0 litre light-duty Diesel engine equipped with exhaust gas recirculation (EGR) and variable geometry turbine (VGT) coupled to an AC transient dynamometer, which was controlled to mimic engine load during in-gear braking and acceleration. The experimental results confirm that the proposed system reduces the time to torque during the 3rd gear tip-in by around 60%. Such a significant improvement was possible due to the increased acceleration of turbocharger immediately after the tip-in. Injecting the compressed gas into the exhaust manifold circumvents the problem of compressor surge and is the key enabler of the superior performance of the proposed concept.