290 resultados para quantum technologies
Resumo:
The growth techniques which have enabled the realization of InGaN-based multi-quantum-well (MQW) structures with high internal quantum efficiencies (IQE) on 150mm (6-in.) silicon substrates are reviewed. InGaN/GaN MQWs are deposited onto GaN templates on large-area (111) silicon substrates, using AlGaN strain-mediating interlayers to inhibit thermal-induced cracking and wafer-bowing, and using a SiN x interlayer to reduce threading dislocation densities in the active region of the MQW structure. MQWs with high IQE approaching 60% have been demonstrated. Atomic resolution electron microscopy and EELS analysis have been used to study the nature of the important interface between the Si(111) substrate and the AlN nucleation layer. We demonstrate an amorphous SiN x interlayer at the interface about 2nm wide, which does not, however, prevent good epitaxy of the AlN on the Si(111) substrate. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
As a potential poverty reduction and climate change strategy, this paper considers the advantages and disadvantages of using renewable energy technologies for rural electrification in developing countries. Although each case must be considered independently, given a reliable fuel source, renewable energy mini-grids powered by biomass gasifiers or micro-hydro plants appear to be the favoured option due to their lower levelised costs, provision of AC power, potential to provide a 24. h service and ability to host larger capacity systems that can power a wide range of electricity uses. Sustainability indicators are applied to three case studies in order to explore the extent to which sustainable welfare benefits can be created by renewable energy mini-grids. Policy work should focus on raising awareness about renewable energy mini-grids, improving institutional, technical and regulatory frameworks and developing innovative financing mechanisms to encourage private sector investments. Establishing joint technology and community engagement training centres should also be encouraged. © 2011 Elsevier Ltd.
Resumo:
The first three reports in this series (Parts I, II and III) deals with binders and technologies used in stabilisation/ solidification (S/S) practice and research in the UK. This first part covers 'basic principles'while the second covers 'research' and the third 'applications'. The purpose of this work, which forms part of the Network STARNET on stabilisation/solidification treatment and remediation, is to identify the knowledge gaps and future research needs in this field. This paper describes the details and basic principles of available binders and technologies in the UK. The introduction in the report includes background on S/S, legislation aspects, overview of STARNET and its activities and details of commonly used binder selection criteria. The report is then divided into two main sections. The first covers binders and includes cement, blastfurnace slag, pulverised fuel ash, lime, natural and organophilic clays, bitumen, waste binders and concludes with proprietary binders. The second part details implementation processes for S/S treatment systems starting with ex-situ treatment systems, such as plant processing, direct mixing and in-drum processing and finishes with in-situ treatment processes, such as mechanical mixing and pressure mixing. © 2005 Taylor & Francis Group.
Resumo:
The first report of report series I, II and III entitled 'basic principles' presented details of the binders and technologies available and used in the stabilisation/ solidification (S/S) treatment of hazardous waste and contaminated land. This second report entitled 'research' presents an overview of the main research work, both experimental and numerical, carried out in the UK concentrating on the last decade or so but also highlighting earlier significant research work. The research work is reported under the headings of the individual binders and for each binder the work is presented in chronological order. In this work, most of the S/S materials are prepared by manual/mechanical mixing. The latter part of this report presents research work on S/S materials prepared using soil mixing with mixing augers. © 2005 Taylor & Francis Group.