222 resultados para beam divergence angle
Resumo:
In current practice the strength evaluation of a bridge system is typically based on firstly using elastic analysis to determine the distribution of load effects in the elements and then checking the ultimate section capacity of those elements. Ductility of the components in most bridge structures permits local yield and subsequent redistribution of the applied loads from the most heavily loaded elements. As a result a bridge can continue to carry additional loading even after one member has yielded, which has conventionally been adopted as the "failure criterion" in bridge strength evaluation. This means that a bridge with inherent redundancy has additional reserves of strength such that the failure of one element does not result in the failure of the complete system. For these bridges warning signs will show up and measures can be undertaken before the ultimate collapse is happening. This paper proposes a rational methodology for calculating the ultimate system strength and including in bridge evaluation the warning level due to redundancy. © 2004 Taylor & Francis Group, London.
Resumo:
An existing driver-vehicle model with neuromuscular dynamics is improved in the areas of cognitive delay, intrinsic muscle dynamics and alpha-gamma co-activation. The model is used to investigate the influence of steering torque feedback and neuromuscular dynamics on the vehicle response to lateral force disturbances. When steering torque feedback is present, it is found that the longitudinal position of the lateral disturbance has a significant influence on whether the drivers reflex response reinforces or attenuates the effect of the disturbance. The response to angle and torque overlay inputs to the steering system is also investigated. The presence of the steering torque feedback reduced the disturbing effect of torque overlay and angle overlay inputs. Reflex action reduced the disturbing effect of a torque overlay input, but increased the disturbing effect of an angle overlay input. Experiments on a driving simulator showed that measured handwheel angle response to an angle overlay input was consistent with the response predicted by the model with reflex action. However, there was significant intra-and inter-subject variability. The results highlight the significance of a drivers neuromuscular dynamics in determining the vehicle response to disturbances. © 2012 Copyright Taylor and Francis Group, LLC.
Resumo:
During its lifetime in the core, the cladding of an Accelerator Driven Subcritical Reactor (ADSR) fuel pin is expected to experience variable stresses due to frequent interruptions in the accelerator proton beam. This paper investigates the thermal fatigue damage in the cladding due to repetitive and unplanned beam interruptions under certain operational conditions. Beam trip data was obtained for four operating high power proton accelerators, among which the Spallation Neutron Source (SNS) superconducting accelerator was selected for further analysis. 9Cr-1Mo-Nb-V (T91) steel was selected as the cladding material because of its proven compatibility with proposed ADSR design concepts. The neutronic, thermal and stress analyses were performed using the PTS-ADS, a code that has been specifically developed for studying the dynamic response to beam-induced transients in accelerator driven subcritical systems. The lifetime of the fuel cladding in the core was estimated for three levels of allowed pin power and specific operating conditions. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Dynamic centrifuge modelling has been carried out at Cambridge since the late 1970s. Over this period, three different mechanical earthquake actuators were developed. In this paper the development of a new servo-hydraulic earthquake actuator is described. The basic design principles are explained along with the need to carry out these designs to match the existing services and systems of the 35 year old Turner beam centrifuge at Cambridge. In addition, some of the features of the Turner beam centrifuge are exploited in the design of this new earthquake actuator. The paper also explains the mechanical fabrication of the actuator and the control systems that were developed in order to generate real earthquake motions. Finally, the performance of this new servo-hydraulic earthquake actuator is presented and assessed based on a wide range of earthquake input motions.
Resumo:
The electrical and structural characteristics of tantalum-titanium bilayers on silicon reacted by electron beam heating have been investigated over a wide range of temperature and time conditions. The reacted layers exhibit low sheet resistance and stable electrical characteristics up to at least 1100℃. Titanium starts reacting from 750℃ onwards for 100 milliseconds reaction times whereas tantalum starts reacting only above 900℃ for such short reaction times. RBS results confirm that silicon is the major diffusing species and there is no evidence for the formation of ternary silicides. Reactions have also been explored on millisecond time scales by non-isothermal heating.
Resumo:
The effects of multiple scattering on acoustic manipulation of spherical particles using helicoidal Bessel-beams are discussed. A closed-form analytical solution is developed to calculate the acoustic radiation force resulting from a Bessel-beam on an acoustically reflective sphere, in the presence of an adjacent spherical particle, immersed in an unbounded fluid medium. The solution is based on the standard Fourier decomposition method and the effect of multi-scattering is taken into account using the addition theorem for spherical coordinates. Of particular interest here is the investigation of the effects of multiple scattering on the emergence of negative axial forces. To investigate the effects, the radiation force applied on the target particle resulting from a helicoidal Bessel-beam of different azimuthal indexes (m = 1 to 4), at different conical angles, is computed. Results are presented for soft and rigid spheres of various sizes, separated by a finite distance. Results have shown that the emergence of negative force regions is very sensitive to the level of cross-scattering between the particles. It has also been shown that in multiple scattering media, the negative axial force may occur at much smaller conical angles than previously reported for single particles, and that acoustic manipulation of soft spheres in such media may also become possible.
Resumo:
Time-stepping finite element analysis of the BDFM for a specific load condition is shown to be a challenging problem because the excitation required cannot be predetermined and the BDFM is not open loops stable for all operating conditions. A simulation approach using feedback control to set the torque and stabilise the BDFM is presented together with implementation details. The performance of the simulation approach is demonstrated with an example and computed results are compared with measurements.
Resumo:
Non-conventional methods of machining are used for many engineering applications where the traditional processes fail to be cost-effective. Such processes include Ion Beam Machining (IBM), focused ion beam (FIB) machining and plasma discharge machining. The mechanisms of material removal and associated hardware and software developed for industrial applications of these fascinating electro-physical and chemical machining processes are reviewed together with the latest research findings. © 2009 CIRP.
Resumo:
Laser beam diagnosis is usually carried out off-line in order to minimise the disruption to the process being carried out. This paper presents the results of a fractional sampling device for a high power beam diagnosis system capable of measuring in process beam properties such as beam diameter, intensity and beam position. The paper discusses the application of this sampling technique for monitoring beam properties during the laser materials processing operation.
Resumo:
Laser beam diagnosis is usually carried out off-line in order to minimise the disruption to the process being carried out. This paper presents the results of a fractional sampling device for a high power beam diagnosis system capable of measuring in process beam properties such as beam diameter, intensity and beam position. The paper discusses the application of this sampling technique for monitoring beam properties during the laser materials processing operation.