235 resultados para atmospheric emission


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Restoring a scene distorted by atmospheric turbulence is a challenging problem in video surveillance. The effect, caused by random, spatially varying, perturbations, makes a model-based solution difficult and in most cases, impractical. In this paper, we propose a novel method for mitigating the effects of atmospheric distortion on observed images, particularly airborne turbulence which can severely degrade a region of interest (ROI). In order to extract accurate detail about objects behind the distorting layer, a simple and efficient frame selection method is proposed to select informative ROIs only from good-quality frames. The ROIs in each frame are then registered to further reduce offsets and distortions. We solve the space-varying distortion problem using region-level fusion based on the dual tree complex wavelet transform. Finally, contrast enhancement is applied. We further propose a learning-based metric specifically for image quality assessment in the presence of atmospheric distortion. This is capable of estimating quality in both full-and no-reference scenarios. The proposed method is shown to significantly outperform existing methods, providing enhanced situational awareness in a range of surveillance scenarios. © 1992-2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reviews recent advances in superradiant (SR) emission in semiconductors at room temperature, a process which has been shown to enable the generation on demand of high power picosecond or subpicosecond pulses across a range of different wavelengths. The different characteristic features of SR emission from semiconductor devices with bulk, quantum-well, and quantum-dot active regions are outlined, and particular emphasis is placed on comparing the characteristic features of SR with those of lasing. Finally, potential applications of SR pulses are discussed. © 1995-2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to understand why emissions of Particulate Matter (PM) from Spark-Ignition (SI) automobiles peak during periods of transient operation such as rapid accelerations, a study of controlled, repeatable transients was performed. Time-resolved engine-out PM emissions from a modern four-cylinder engine during transient load and air/fuel ratio operation were examined, and the results could be fit in most cases to a first order time response. The time constants for the transient response are similar to those measured for changes in intake valve temperature, reflecting the strong dependence of PM emissions on the amount of liquid fuel in the combustion chamber. In only one unrepeatable case did the time response differ from a first order function: showing an overshoot in PM emissions during transition from the initial to the final steady state PM emission level. PM emissions during controlled, motored start-up experiments show a peak at start-up followed by a period during which emissions are either relatively constant or drift somewhat. When the fuel injection and ignition are shut off, PM emissions also peak briefly, but rapidly decay to low levels. Qualitative implications on the study and modeling of PM emissions during transient engine operation are discussed. Copyright © 1999 Society of Automotive Engineers, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene is a single layer of covalently bonded carbon atoms, which was discovered only 8 years ago and yet has already attracted intense research and commercial interest. Initial research focused on its remarkable electronic properties, such as the observation of massless Dirac fermions and the half-integer quantum Hall effect. Now graphene is finding application in touch-screen displays, as channels in high-frequency transistors and in graphene-based integrated circuits. The potential for using the unique properties of graphene in terahertz-frequency electronics is particularly exciting; however, initial experiments probing the terahertz-frequency response of graphene are only just emerging. Here we show that the photoconductivity of graphene at terahertz frequencies is dramatically altered by the adsorption of atmospheric gases, such as nitrogen and oxygen. Furthermore, we observe the signature of terahertz stimulated emission from gas-adsorbed graphene. Our findings highlight the importance of environmental conditions on the design and fabrication of high-speed, graphene-based devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we demonstrate a micro-inkjet printing technique as a reproducible post-process for the deposition of carbon nanoparticles and fullerene adlayers onto fully CMOS compatible micro-electro-mechanical silicon-on-insulator infrared (IR) light sources to enhance their infrared emission. We show experimentally a significant increase in the infrared emission efficiency of the coated emitters. We numerically validate these findings with models suggesting a dominant performance increase for wavelengths <5.5 μm. Here, the bimodal size distribution in the diameter of the carbon nanoparticles, relative to the fullerenes, is an effective mediator towards topologically enhanced emittance of our miniaturised emitters. A 90% improvement in IR emission power density has been shown which we have rationalised with an increase in the mean thickness of the deposited carbon nanoparticle adlayer. © 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we investigate the spontaneous emission properties of radiating molecules embedded in a chiral nematic liquid crystal, under the assumption that the electronic transition frequency is close to the photonic edge mode of the structure, i.e., at resonance. We take into account the transition broadening and the decay of electromagnetic field modes supported by the so-called "mirrorless"cavity. We employ the Jaynes-Cummings Hamiltonian to describe the electron interaction with the electromagnetic field, focusing on the mode with the diffracting polarization in the chiral nematic layer. As known in these structures, the density of photon states, calculated via the Wigner method, has distinct peaks on either side of the photonic band gap, which manifests itself as a considerable modification of the emission spectrum. We demonstrate that, near resonance, there are notable differences between the behavior of the density of states and the spontaneous emission profile of these structures. In addition, we examine in some detail the case of the logarithmic peak exhibited in the density of states in two-dimensional photonic structures and obtain analytic relations for the Lamb shift and the broadening of the atomic transition in the emission spectrum. The dynamical behavior of the atom-field system is described by a system of two first-order differential equations, solved using the Green's-function method and the Fourier transform. The emission spectra are then calculated and compared with experimental data. © 2013 American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface states in semiconductor nanowires (NWs) are detrimental to the NW optical and electronic properties and to their light emission-based applications, due to the large surface-to-volume ratio of NWs and the congregation of defects states near surfaces. In this paper, we demonstrated an effective approach to eliminate surface states in InAs NWs of zinc-blende (ZB) and wurtzite (WZ) structures and a dramatic recovery of band edge emission through surface passivation with organic sulfide octadecylthiol (ODT). Microphotoluminescence (PL) measurements were carried out before and after passivation to study the dominant recombination mechanisms and surface state densities of the NWs. For WZ-NWs, we show that the passivation removed the surface states and recovered the band-edge emission, leading to a factor of ∼19 reduction of PL linewidth. For ZB-NWs, the deep surface states were removed and the PL peaks width became as narrow as ∼250 nm with some remaining emission of near band-edge surface states. The passivated NWs showed excellent stability in atmosphere, water, and heat environments. In particular, no observable changes occurred in the PL features from the passivated NWs exposed in air for more than five months.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we investigate the spontaneous emission properties of radiating molecules embedded in a chiral nematic liquid crystal, under the assumption that the electronic transition frequency is close to the photonic edge mode of the structure, i.e., at resonance. We take into account the transition broadening and the decay of electromagnetic field modes supported by the so-called "mirrorless"cavity. We employ the Jaynes-Cummings Hamiltonian to describe the electron interaction with the electromagnetic field, focusing on the mode with the diffracting polarization in the chiral nematic layer. As known in these structures, the density of photon states, calculated via the Wigner method, has distinct peaks on either side of the photonic band gap, which manifests itself as a considerable modification of the emission spectrum. We demonstrate that, near resonance, there are notable differences between the behavior of the density of states and the spontaneous emission profile of these structures. In addition, we examine in some detail the case of the logarithmic peak exhibited in the density of states in two-dimensional photonic structures and obtain analytic relations for the Lamb shift and the broadening of the atomic transition in the emission spectrum. The dynamical behavior of the atom-field system is described by a system of two first-order differential equations, solved using the Green's-function method and the Fourier transform. The emission spectra are then calculated and compared with experimental data.