392 resultados para TiO2 nanotube arrays


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold cathodes based on carbon nanotubes (CNs) allow to produce a pulsed/directly modulated electron beam. Using an array of vertically aligned CNs that exhibit an aspect ratio of around 200, we demonstrated the modulation of a 1.5 A/cm2 beam at 1.5 GHz frequency. Such CN cathodes are very promising for their use in a new generation of compact and low cost microwave amplifiers that operates between 30 and 100 GHz. ©2005 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold cathodes based on carbon nanotubes allow to produce a modulated electron beam. Using an array of vertically aligned CNs that exhibit an aspect ratio of about 200, we demonstrated the modulation of a high current density beam (∼ 1 A/cm2) at 1.5 and 32 GHz frequencies. Such CN cathodes are very promising for their use in a new generation of compact, highly efficient and low cost amplifiers that operate between 10 and 100 GHz. © 2007 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Band-edge liquid crystal lasers are of interest for a number of applications including laser projection displays. Herein, we demonstrate simultaneous red-green-blue lasing from a single liquid crystal sample by creating a two-dimensional laser array fabricated from dye-doped chiral nematic liquid crystals. By forming a pitch gradient across the cell, and optically pumping the sample using a lenslet array, a polychromatic laser array can be observed consisting simultaneously of red-green-blue colors. Specifically, the two-dimensional polychromatic array could be used to produce a laser-based display, with low speckle and wide color gamut, whereby no complex fabrication procedure is required to generate the individual 'pixels'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Pd-contacted dopant-free CNTFET with small-diameter (0.57 nm) carbon nanotube showing an anomalous n-type electrical characteristic is reported for the first time. This observed behaviour is attributed to a carbon nanotube work function higher than (or close to) palladium as well as a large hole-to-electron effective mass ratio of approximately 2.5 predicted by hybridization in small-diameter nanotubes. A variation of the conduction type with temperature is also observed and is attributed to an increase of the palladium work function and decrease of the CNT work function with increasing temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The carbon nanotube-liquid-crystal (CNT-LC) nanophotonic device is a class of device based on the hybrid combination of a sparse array of multiwall carbon nanotube electrodes grown on a silicon surface in a liquid-crystal cell. The multiwall carbon nanotubes act as individual electrode sites that spawn an electric-field profile, dictating the refractive index profile within the liquid crystal and hence creating a series of graded index profiles, which form various optical elements such as a simple microlens array. We present the refractive index and therefore phase modulation capabilities of a CNT-LC nanophotonic device with experimental results as well as computer modeling and potential applications.