240 resultados para Part songs.
Resumo:
The potential adverse human health and climate impacts of emissions from UK airports have become a significant political issue, yet the emissions, air quality impacts and health impacts attributable to UK airports remain largely unstudied. We produce an inventory of UK airport emissions - including aircraft landing and takeoff (LTO) operations and airside support equipment - with uncertainties quantified. The airports studied account for more than 95% of UK air passengers in 2005. We estimate that in 2005, UK airports emitted 10.2 Gg [-23 to +29%] of NOx, 0.73 Gg [-29 to +32%] of SO2, 11.7 Gg [-42 to +77%] of CO, 1.8 Gg [-59 to +155%] of HC, 2.4 Tg [-13 to +12%] of CO2, and 0.31 Gg [-36 to +45%] of PM2.5. This translates to 2.5 Tg [-12 to +12%] CO2-eq using Global Warming Potentials for a 100-year time horizon. Uncertainty estimates were based on analysis of data from aircraft emissions measurement campaigns and analyses of aircraft operations.The First-Order Approximation (FOA3) - currently the standard approach used to estimate particulate matter emissions from aircraft - is compared to measurements and it is shown that there are discrepancies greater than an order of magnitude for 40% of cases for both organic carbon and black carbon emissions indices. Modified methods to approximate organic carbon emissions, arising from incomplete combustion and lubrication oil, and black carbon are proposed. These alterations lead to factor 8 and a 44% increase in the annual emissions estimates of black and organic carbon particulate matter, respectively, leading to a factor 3.4 increase in total PM2.5 emissions compared to the current FOA3 methodology. Our estimates of emissions are used in Part II to quantify the air quality and health impacts of UK airports, to assess mitigation options, and to estimate the impacts of a potential London airport expansion. © 2011 Elsevier Ltd.
Resumo:
The first three reports in this series (Parts I, II and III) deals with binders and technologies used in stabilisation/ solidification (S/S) practice and research in the UK. This first part covers 'basic principles'while the second covers 'research' and the third 'applications'. The purpose of this work, which forms part of the Network STARNET on stabilisation/solidification treatment and remediation, is to identify the knowledge gaps and future research needs in this field. This paper describes the details and basic principles of available binders and technologies in the UK. The introduction in the report includes background on S/S, legislation aspects, overview of STARNET and its activities and details of commonly used binder selection criteria. The report is then divided into two main sections. The first covers binders and includes cement, blastfurnace slag, pulverised fuel ash, lime, natural and organophilic clays, bitumen, waste binders and concludes with proprietary binders. The second part details implementation processes for S/S treatment systems starting with ex-situ treatment systems, such as plant processing, direct mixing and in-drum processing and finishes with in-situ treatment processes, such as mechanical mixing and pressure mixing. © 2005 Taylor & Francis Group.
Resumo:
The first report of report series I, II and III entitled 'basic principles' presented details of the binders and technologies available and used in the stabilisation/ solidification (S/S) treatment of hazardous waste and contaminated land. This second report entitled 'research' presents an overview of the main research work, both experimental and numerical, carried out in the UK concentrating on the last decade or so but also highlighting earlier significant research work. The research work is reported under the headings of the individual binders and for each binder the work is presented in chronological order. In this work, most of the S/S materials are prepared by manual/mechanical mixing. The latter part of this report presents research work on S/S materials prepared using soil mixing with mixing augers. © 2005 Taylor & Francis Group.