273 resultados para ELECTRON CRYSTALLOGRAPHY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of nano-composite Y-Ba-Cu-O (YBCO) superconductors containing nano-sized, non-superconducting particles of Y2Ba 4CuMOx (M-2411 with M = Ag and Nb) have been prepared by the PLD technique. Electron backscatter diffraction (EBSD) has been used to analyze the crystallographic orientation of nano-particles embedded in the film microstructure. The superconducting YBa2Cu3O7 (Y-123) phase matrix is textured with a dominant (001) orientation for all samples, whereas the M-2411 phase exhibits a random orientation. Angular critical current measurements at various temperature (T) and applied magnetic field (B) have been performed on thin films containing different concentration of the M-2411 second phase. An increase in critical current density J c at T < 77 K and B < 6 T is observed for samples with low concentration of the second phase (2 mol % M-2411). Films containing 5 mol % Ag-2411 exhibit lower Jc than pure Y-123 thin films at all fields and temperatures. Samples with 5 mol % Nb-2411 show higher Jc(B) than phase pure Y-123 thin films for T < 77 K. © 2010 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to describe the growth and optimization of ballasted carbon nanotube (CNT) and CNT/Zinc Oxide nanostructures to produce novel electron sources for use in lighting and x-ray applications. © 2010 ITE and SID.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid thermal annealing of arsenic and boron difluoride implants, such as those used for source/drain regions in CMOS, has been carried out using a scanning electron beam annealer, as part of a study of transient diffusion effects. Three types of e-beam anneal have been performed, with peak temperatures in the range 900 -1200 degree C; the normal isothermal e-beam anneals, together with sub-second fast anneals and 'dual-pulse' anneals, in which the sample undergoes an isothermal pre-anneal followed by rapid heating to the required anneal temperature is less than 0. 5s. The diffusion occuring during these anneal cycles has been modelled using SPS-1D, an implant and diffusion modelling program developed by one of the authors. This has been modified to incorporate simulated temperature vs. time cycles for the anneals. Results are presented applying the usual equilibrium clustering model, a transient point-defect enhancement to the diffusivity proposed recently by Fair and a new dynamic clustering model for arsenic. Good agreement with SIMS measurements is obtained using the dynamic clustering model, without recourse to a transient defect model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single electron transistors are fabricated on single Si nanochains, synthesised by thermal evaporation of SiO solid sources. The nanochains consist of one-dimensional arrays of ~10nm Si nanocrystals, separated by SiO 2 regions. At 300 K, strong Coulomb staircases are seen in the drain-source current-voltage (I ds-V ds) characteristics, and single-electron oscillations are seen in the drain-source current-gate voltage (I ds-V ds) characteristics. From 300-20 K, a large increase in the Coulomb blockade region is observed. The characteristics are explained using singleelectron Monte Carlo simulation, where an inhomogeneous multiple tunnel junction represents a nanochain. Any reduction in capacitance at a nanocrystal well within the nanochain creates a conduction " bottleneck", suppressing current at low voltage and improving the Coulomb staircase. The single-electron charging energy at such an island can be very high, ~20k BT at 300 K. © 2012 The Japan Society of Applied Physics.