287 resultados para AA AMYLOIDOSIS


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamics of a fluid in a vertical tube, subjected to an oscillatory pressure gradient, is studied experimentally for both a Newtonian and a viscoelastic shear-thinning fluid. Particle image velocimetry is used to determine the two-dimensional velocity fields in the vertical plane of the tube axis, in a range of driving amplitudes from 0.8 to 2.5 mm and of driving frequencies from 2.0 to 11.5 Hz. The Newtonian fluid exhibits a laminar flow regime, independent of the axial position, in the whole range of drivings. For the complex fluid, instead, the parallel shear flow regime exhibited at low amplitudes [Torralba, Phys. Rev. E 72, 016308 (2005)] becomes unstable at higher drivings against the formation of symmetric vortices, equally spaced along the tube. At even higher drivings the vortex structure itself becomes unstable, and complex nonsymmetric structures develop. Given that inertial effects remain negligible even at the hardest drivings (Re < 10(-1)), it is the complex rheology of the fluid that is responsible for the instabilities observed. The system studied represents an interesting example of the development of shear-induced instabilities in nonlinear complex fluids in purely parallel shear flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amplitude and phase velocity measurements on the laminar oscillatory viscous boundary layer produced by acoustic waves are presented. The measurements were carried out in acoustic standing waves in air with frequencies of 68.5 and 114.5 Hz using laser Doppler anemometry and particle image velocimetry. The results obtained by these two techniques are in good agreement with the predictions made by the Rayleigh viscous boundary layer theory and confirm the existence of a local maximum of the velocity amplitude and its expected location.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synchronization of periodic and chaotic oscillations between two coupled rotating baroclinic fluid systems will be presented. The numerical part of the study involves a pair of coupled two-layer quasigeostrophic models, and the experimental part comprises two thermally coupled baroclinic fluid annuli, rotating one above the other on the same turntable. Phase synchronization and imperfect synchronization (phase slips) have been found in both model and experiments, and model simulations also exhibit chaos-destroying synchronization. © 2008 IOP Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synchronization is now well established as representing coherent behaviour between two or more otherwise autonomous nonlinear systems subject to some degree of coupling. Such behaviour has mainly been studied to date, however, in relatively low-dimensional discrete systems or networks. But the possibility of similar kinds of behaviour in continuous or extended spatiotemporal systems has many potential practical implications, especially in various areas of geophysics. We review here a range of cyclically varying phenomena within the Earth's climate system for which there may be some evidence or indication of the possibility of synchronized behaviour, albeit perhaps imperfect or highly intermittent. The exploitation of this approach is still at a relatively early stage within climate science and dynamics, in which the climate system is regarded as a hierarchy of many coupled sub-systems with complex nonlinear feedbacks and forcings. The possibility of synchronization between climate oscillations (global or local) and a predictable external forcing raises important questions of how models of such phenomena can be validated and verified, since the resulting response may be relatively insensitive to the details of the model being synchronized. The use of laboratory analogues may therefore have an important role to play in the study of natural systems that can only be observed and for which controlled experiments are impossible. We go on to demonstrate that synchronization can be observed in the laboratory, even in weakly coupled fluid dynamical systems that may serve as direct analogues of the behaviour of major components of the Earth's climate system. The potential implications and observability of these effects in the long-term climate variability of the Earth is further discussed. © 2010 Springer-Verlag Berlin Heidelberg.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we demonstrate synchronization of two electrically coupled MEMS oscillators incorporating nearly identical silicon tuning fork microresonators. It is seen that as the output of the oscillators are coupled, they exhibit a synchronized response wherein the output amplitudes and signal-to-noise ratios of the two oscillators are improved relative to the case where the two oscillators are uncoupled. The observed output frequency of each oscillator before coupling is 219402.4 Hz and 219403.6 Hz respectively. In contrast, when the oscillators are driven simultaneously, they lock at a common output frequency of 219401.3 Hz and their outputs are found to be out-of-phase with respect to each other. A 6 dBm gain in output power and a reduction in the phase fluctuations of the output signal are observed for the coupled oscillators compared to the case when the oscillators are uncoupled. © 2011 IEEE.