328 resultados para 3D accuracy
Resumo:
Bone as most of living tissues is able, during its entire lifetime, to adapt its internal microstructure and subsequently its associated mechanical properties to its specific mechanical and physiological environment in a process commonly known as bone remodelling. Bone is therefore continuously renewed and micro-damage, accumulated by fatigue or creep, is removed minimizing the risk of fracture. Nevertheless, bone is not always able to repair itself completely. Actually, if bone repairing function is slower than micro-damage accumulation, a type of bone fracture, usually known as "stress fracture", can finally evolve. In this paper, we propose a bone remodelling continuous model able to simulate micro-damage growth and repair in a coupled way and able therefore to predict the occurrence of "stress fractures". The biological bone remodelling process is modelled in terms of equations that describe the activity of basic multicellular units. The predicted results show a good correspondence with experimental and clinical data. For example, in disuse, bone porosity increases until an equilibrium situation is achieved. In overloading, bone porosity decreases unless the damage rate is so high that causes resorption or "stress fracture".
Resumo:
When a racing driver steers a car around a sharp bend, there is a trade-off between speed and accuracy, in that high speed can lead to a skid whereas a low speed increases lap time, both of which can adversely affect the driver's payoff function. While speed-accuracy trade-offs have been studied extensively, their susceptibility to risk sensitivity is much less understood, since most theories of motor control are risk neutral with respect to payoff, i.e., they only consider mean payoffs and ignore payoff variability. Here we investigate how individual risk attitudes impact a motor task that involves such a speed-accuracy trade-off. We designed an experiment where a target had to be hit and the reward (given in points) increased as a function of both subjects' endpoint accuracy and endpoint velocity. As faster movements lead to poorer endpoint accuracy, the variance of the reward increased for higher velocities. We tested subjects on two reward conditions that had the same mean reward but differed in the variance of the reward. A risk-neutral account predicts that subjects should only maximize the mean reward and hence perform identically in the two conditions. In contrast, we found that some (risk-averse) subjects chose to move with lower velocities and other (risk-seeking) subjects with higher velocities in the condition with higher reward variance (risk). This behavior is suboptimal with regard to maximizing the mean number of points but is in accordance with a risk-sensitive account of movement selection. Our study suggests that individual risk sensitivity is an important factor in motor tasks with speed-accuracy trade-offs.