288 resultados para fiber loop mirror
Resumo:
Since the exchange coupling theory was proposed by Kneller and Hawig in 1991 there has been a significant effort within the magnetic materials community to enhance the performance of rare earth magnets by utilising nano-composite meta-materials. Inclusions of magnetically soft iron smaller than approximately 10 nm in diameter are exchange coupled to a surrounding magnetically hard Nd2Fe14B matrix and provide an enhanced saturisation magnetisation without reducing coercivity. For such a fine nanostructure to be produced, close control over the thermal history of the material is needed. A processing route which provides this is laser annealing from an amorphous alloy precursor. In the current work, relationships between laser parameters, thermal histories of laser processed amorphous stoichiometric NdFeB ribbons and the magnetic properties of the resulting nanocrystalline products have been determined with a view to applying the process to thick film nanocomposite magnet production.
Resumo:
Electrolysis is the most mature form of hydrogen production. Unfortunately, water electrolysis has not yet achieved the efficiency and the cost levels required for any practical application. In order to enhance the current density, modification of the electrolyte and the electrode morphology are the most popular approaches. Recently there have been numerous reports on how to improve the efficiency of hydrogen production by water splitting [1-3]. On the electrode side, the use of non-platinum high efficiency electrode materials for water splitting will provide a promising future for the hydrogen economy. An ideal electrode for water electrolysis should have good permeability to water and gas. It should also offer good electrical properties with a long life. A porous graphite plate, when coated with titania, for example, is known to provide a simple and economical electrode for water electrolysis [4]. © 2010 IEEE.
Resumo:
BACKGROUND: Carbon nanotube (CNT) fiber directly spun from an aerogel has a unique, well-aligned nanostructure (nano-pore and nano-brush), and thus provides high electro-catalytic activity and strong interaction with glucose oxidase enzyme. It shows great potential as a microelectrode for electrochemical biosensors. RESULTS: Cyclic voltammogram results indicate that post-synthesis treatments have great influence on the electrocatalytic activity of CNT fibers. Raman spectroscopy and electrical conductivity tests suggest that fibers annealed at 250 °C remove most of the impurities without damaging the graphite-like structure. This leads to a nano-porous morphology on the surface and the highest conductivity value (1.1 × 10 5 S m -1). Two CNT fiber microelectrode designs were applied to enhance their electron transfer behaviour, and it was found that a design using a 30 nm gold coating is able to linearly cover human physiological glucose level between 2 and 30 mmol L -1. The design also leads to a low detection limit of 25 μmol L -1. CONCLUSIONS: The high performance of CNT fibers not only offers exceptional mechanical and electrical properties, but also provides a large surface area and electron transfer pathway. They consequently make excellent bioactive microelectrodes for glucose biosensing, especially for potential use in implantable devices. © 2011 Society of Chemical Industry.
Resumo:
This study investigates the structural behavior of precracked reinforced concrete (RC) T-beams strengthened in shear with externally bonded carbon fiber-reinforced polymer (CFRP) sheets. It reports on seven tests on unstrengthened and strengthened RC T-beams, identifying the influence of load history, beam depth, and percentage of longitudinal steel reinforcement on the structural behavior. The experimental results indicate that the contributions of the external CFRP sheets to the shear force capacity can be significant and depend on most of the investigated variables. This study also investigates the accuracy of the prediction of the fiber-reinforced polymer (FRP) contribution in ACI 440.2R-08, UK Concrete Society TR55, and fib Bulletin 14 design guidelines for shear strengthening. A comparison of predicted values with experimental results indicates that the guidelines can overestimate the shear contribution of the externally bonded FRP system. © 2012, American Concrete Institute.