271 resultados para automatic speech recognition
Resumo:
Recently there has been interest in combined gen- erative/discriminative classifiers. In these classifiers features for the discriminative models are derived from generative kernels. One advantage of using generative kernels is that systematic approaches exist how to introduce complex dependencies beyond conditional independence assumptions. Furthermore, by using generative kernels model-based compensation/adaptation tech- niques can be applied to make discriminative models robust to noise/speaker conditions. This paper extends previous work with combined generative/discriminative classifiers in several directions. First, it introduces derivative kernels based on context- dependent generative models. Second, it describes how derivative kernels can be incorporated in continuous discriminative models. Third, it addresses the issues associated with large number of classes and parameters when context-dependent models and high- dimensional features of derivative kernels are used. The approach is evaluated on two noise-corrupted tasks: small vocabulary AURORA 2 and medium-to-large vocabulary AURORA 4 task.
Resumo:
Statistical dialogue models have required a large number of dialogues to optimise the dialogue policy, relying on the use of a simulated user. This results in a mismatch between training and live conditions, and significant development costs for the simulator thereby mitigating many of the claimed benefits of such models. Recent work on Gaussian process reinforcement learning, has shown that learning can be substantially accelerated. This paper reports on an experiment to learn a policy for a real-world task directly from human interaction using rewards provided by users. It shows that a usable policy can be learnt in just a few hundred dialogues without needing a user simulator and, using a learning strategy that reduces the risk of taking bad actions. The paper also investigates adaptation behaviour when the system continues learning for several thousand dialogues and highlights the need for robustness to noisy rewards. © 2011 IEEE.
Resumo:
Recently there has been interest in combining generative and discriminative classifiers. In these classifiers features for the discriminative models are derived from the generative kernels. One advantage of using generative kernels is that systematic approaches exist to introduce complex dependencies into the feature-space. Furthermore, as the features are based on generative models standard model-based compensation and adaptation techniques can be applied to make discriminative models robust to noise and speaker conditions. This paper extends previous work in this framework in several directions. First, it introduces derivative kernels based on context-dependent generative models. Second, it describes how derivative kernels can be incorporated in structured discriminative models. Third, it addresses the issues associated with large number of classes and parameters when context-dependent models and high-dimensional feature-spaces of derivative kernels are used. The approach is evaluated on two noise-corrupted tasks: small vocabulary AURORA 2 and medium-to-large vocabulary AURORA 4 task. © 2011 IEEE.
Resumo:
This paper describes a structured SVM framework suitable for noise-robust medium/large vocabulary speech recognition. Several theoretical and practical extensions to previous work on small vocabulary tasks are detailed. The joint feature space based on word models is extended to allow context-dependent triphone models to be used. By interpreting the structured SVM as a large margin log-linear model, illustrates that there is an implicit assumption that the prior of the discriminative parameter is a zero mean Gaussian. However, depending on the definition of likelihood feature space, a non-zero prior may be more appropriate. A general Gaussian prior is incorporated into the large margin training criterion in a form that allows the cutting plan algorithm to be directly applied. To further speed up the training process, 1-slack algorithm, caching competing hypothesis and parallelization strategies are also proposed. The performance of structured SVMs is evaluated on noise corrupted medium vocabulary speech recognition task: AURORA 4. © 2011 IEEE.
Resumo:
In recent years, the use of morphological decomposition strategies for Arabic Automatic Speech Recognition (ASR) has become increasingly popular. Systems trained on morphologically decomposed data are often used in combination with standard word-based approaches, and they have been found to yield consistent performance improvements. The present article contributes to this ongoing research endeavour by exploring the use of the 'Morphological Analysis and Disambiguation for Arabic' (MADA) tools for this purpose. System integration issues concerning language modelling and dictionary construction, as well as the estimation of pronunciation probabilities, are discussed. In particular, a novel solution for morpheme-to-word conversion is presented which makes use of an N-gram Statistical Machine Translation (SMT) approach. System performance is investigated within a multi-pass adaptation/combination framework. All the systems described in this paper are evaluated on an Arabic large vocabulary speech recognition task which includes both Broadcast News and Broadcast Conversation test data. It is shown that the use of MADA-based systems, in combination with word-based systems, can reduce the Word Error Rates by up to 8.1 relative. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Obtaining accurate confidence measures for automatic speech recognition (ASR) transcriptions is an important task which stands to benefit from the use of multiple information sources. This paper investigates the application of conditional random field (CRF) models as a principled technique for combining multiple features from such sources. A novel method for combining suitably defined features is presented, allowing for confidence annotation using lattice-based features of hypotheses other than the lattice 1-best. The resulting framework is applied to different stages of a state-of-the-art large vocabulary speech recognition pipeline, and consistent improvements are shown over a sophisticated baseline system. Copyright © 2011 ISCA.
Resumo:
The task of word-level confidence estimation (CE) for automatic speech recognition (ASR) systems stands to benefit from the combination of suitably defined input features from multiple information sources. However, the information sources of interest may not necessarily operate at the same level of granularity as the underlying ASR system. The research described here builds on previous work on confidence estimation for ASR systems using features extracted from word-level recognition lattices, by incorporating information at the sub-word level. Furthermore, the use of Conditional Random Fields (CRFs) with hidden states is investigated as a technique to combine information for word-level CE. Performance improvements are shown using the sub-word-level information in linear-chain CRFs with appropriately engineered feature functions, as well as when applying the hidden-state CRF model at the word level.
Resumo:
Adaptation to speaker and environment changes is an essential part of current automatic speech recognition (ASR) systems. In recent years the use of multi-layer percpetrons (MLPs) has become increasingly common in ASR systems. A standard approach to handling speaker differences when using MLPs is to apply a global speaker-specific constrained MLLR (CMLLR) transform to the features prior to training or using the MLP. This paper considers the situation when there are both speaker and channel, communication link, differences in the data. A more powerful transform, front-end CMLLR (FE-CMLLR), is applied to the inputs to the MLP to represent the channel differences. Though global, these FE-CMLLR transforms vary from time-instance to time-instance. Experiments on a channel distorted dialect Arabic conversational speech recognition task indicates the usefulness of adapting MLP features using both CMLLR and FE-CMLLR transforms. © 2013 IEEE.
Resumo:
The development of high-performance speech processing systems for low-resource languages is a challenging area. One approach to address the lack of resources is to make use of data from multiple languages. A popular direction in recent years is to use bottleneck features, or hybrid systems, trained on multilingual data for speech-to-text (STT) systems. This paper presents an investigation into the application of these multilingual approaches to spoken term detection. Experiments were run using the IARPA Babel limited language pack corpora (∼10 hours/language) with 4 languages for initial multilingual system development and an additional held-out target language. STT gains achieved through using multilingual bottleneck features in a Tandem configuration are shown to also apply to keyword search (KWS). Further improvements in both STT and KWS were observed by incorporating language questions into the Tandem GMM-HMM decision trees for the training set languages. Adapted hybrid systems performed slightly worse on average than the adapted Tandem systems. A language independent acoustic model test on the target language showed that retraining or adapting of the acoustic models to the target language is currently minimally needed to achieve reasonable performance. © 2013 IEEE.
Resumo:
This paper describes the development of the 2003 CU-HTK large vocabulary speech recognition system for Conversational Telephone Speech (CTS). The system was designed based on a multi-pass, multi-branch structure where the output of all branches is combined using system combination. A number of advanced modelling techniques such as Speaker Adaptive Training, Heteroscedastic Linear Discriminant Analysis, Minimum Phone Error estimation and specially constructed Single Pronunciation dictionaries were employed. The effectiveness of each of these techniques and their potential contribution to the result of system combination was evaluated in the framework of a state-of-the-art LVCSR system with sophisticated adaptation. The final 2003 CU-HTK CTS system constructed from some of these models is described and its performance on the DARPA/NIST 2003 Rich Transcription (RT-03) evaluation test set is discussed.
Resumo:
In recent years there has been a growing interest amongst the speech research community into the use of spectral estimators which circumvent the traditional quasi-stationary assumption and provide greater time-frequency (t-f) resolution than conventional spectral estimators, such as the short time Fourier power spectrum (STFPS). One distribution in particular, the Wigner distribution (WD), has attracted considerable interest. However, experimental studies have indicated that, despite its improved t-f resolution, employing the WD as the front end of speech recognition system actually reduces recognition performance; only by explicitly re-introducing t-f smoothing into the WD are recognition rates improved. In this paper we provide an explanation for these findings. By treating the spectral estimation problem as one of optimization of a bias variance trade off, we show why additional t-f smoothing improves recognition rates, despite reducing the t-f resolution of the spectral estimator. A practical adaptive smoothing algorithm is presented, whicy attempts to match the degree of smoothing introduced into the WD with the time varying quasi-stationary regions within the speech waveform. The recognition performance of the resulting adaptively smoothed estimator is found to be comparable to that of conventional filterbank estimators, yet the average temporal sampling rate of the resulting spectral vectors is reduced by around a factor of 10. © 1992.
Resumo:
This paper describes recent improvements to the Cambridge Arabic Large Vocabulary Continuous Speech Recognition (LVCSR) Speech-to-Text (STT) system. It is shown that wordboundary context markers provide a powerful method to enhance graphemic systems by implicit phonetic information, improving the modelling capability of graphemic systems. In addition, a robust technique for full covariance Gaussian modelling in the Minimum Phone Error (MPE) training framework is introduced. This reduces the full covariance training to a diagonal covariance training problem, thereby solving related robustness problems. The full system results show that the combined use of these and other techniques within a multi-branch combination framework reduces the Word Error Rate (WER) of the complete system by up to 5.9% relative. Copyright © 2011 ISCA.
Resumo:
A partially observable Markov decision process has been proposed as a dialogue model that enables robustness to speech recognition errors and automatic policy optimisation using reinforcement learning (RL). However, conventional RL algorithms require a very large number of dialogues, necessitating a user simulator. Recently, Gaussian processes have been shown to substantially speed up the optimisation, making it possible to learn directly from interaction with human users. However, early studies have been limited to very low dimensional spaces and the learning has exhibited convergence problems. Here we investigate learning from human interaction using the Bayesian Update of Dialogue State system. This dynamic Bayesian network based system has an optimisation space covering more than one hundred features, allowing a wide range of behaviours to be learned. Using an improved policy model and a more robust reward function, we show that stable learning can be achieved that significantly outperforms a simulator trained policy. © 2013 IEEE.