210 resultados para automatic generation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an HMM-based approach to generating emotional intonation patterns. A set of models were built to represent syllable-length intonation units. In a classification framework, the models were able to detect a sequence of intonation units from raw fundamental frequency values. Using the models in a generative framework, we were able to synthesize smooth and natural sounding pitch contours. As a case study for emotional intonation generation, Maximum Likelihood Linear Regression (MLLR) adaptation was used to transform the neutral model parameters with a small amount of happy and sad speech data. Perceptual tests showed that listeners could identify the speech with the sad intonation 80% of the time. On the other hand, listeners formed a bimodal distribution in their ability to detect the system generated happy intontation and on average listeners were able to detect happy intonation only 46% of the time. © Springer-Verlag Berlin Heidelberg 2005.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: