206 resultados para Voltage stabilizing circuits
Resumo:
The behavior of the drain voltage rise of the Lateral IGBT during inductive turn-off is studied in detail. Numerical simulations show that, if compared with the well known vertical IGBT, the Lateral IGBT presents a differences in the on-state stored charge and in the growth of the depleted region that result in a different drain voltage rise. In this paper a complete model for the voltage rise is devised through an accurate calculation of the equivalent output capacitance. The model is in excellent agreement with two-dimensional simulations. Further, the paper shows that previously proposed models, which targeted the vertical IGBT, are not adequate for the description of the turn-off voltage rise in the Lateral IGBT. © Springer Science + Business Media LLC 2006.
Resumo:
Nowadays, all new wind turbine generators have to meet strict grid codes, especially riding through certain grid faults, such as a low voltage caused by grid short circuits. The Low-Voltage Ride Through (LVRT) capability has become a key issue in assessing the performance of wind turbine generators. The mediumspeed Brushless DFIG in combination with a simplified two-stage gearbox shows commercial promise as a replacement for conventional DFIGs due to its lower cost and higher reliability. Furthermore, the Brushless DFIG has significantly improved LVRT performance when compared with the DFIG due to its inherent design characteristics. In this paper, the authors propose a control strategy for the Brushless DFIG to improve its LVRT performance. The controller has been implemented on a prototype 250 kW Brushless DFIG and test results show that LVRT is possible without a need for any external protective hardware such as a crowbar.
Resumo:
Active Voltage Control (AVC) is an implementation of classic Proportional-Derivative (PD) control and multi-loop feedback control to force an IGBT to follow a pre-set switching trajectory. Previously, AVC was mainly used for controlling series-connected IGBTs in order to enable voltage balance between IGBTs. In this paper, the nonlinear IGBT turn-off transient is further discussed and the turnoff of a single IGBT under AVC is further optimised in order to meet the demand of Power Electronic Building Block (PEBB) applications. © 2013 IEEE.
Resumo:
High-performance power switching devices (IGBT/MOSFET) realise high-performance power converters. Unfortunately, with a high switching speed of the IGBT or MOSFET freewheel diode chopper cell, the circuit has intrinsic sources of high-level EMI. Therefore, costly EMI filters or shielding are normally demanded on the load and supply side. Although an S-shaped voltage transient with a high order of derivation eliminates the discontinuity and could suppress HF spectrum of EMI emissions, a practical control scheme is still under development. In this paper, Active Voltage Control (AVC) is applied to successfully define IGBT switching dynamics with a smoothed Gaussian waveform so a reduced EMI can be achieved without extra EMI suppression devices. © 2013 IEEE.
Resumo:
We present a simple and semi-physical analytical description of the current-voltage characteristics of amorphous oxide semiconductor thin-film transistors in the above-threshold and sub-threshold regions. Both regions are described by single unified expression that employs the same set of model parameter values directly extracted from measured terminal characteristics. The model accurately reproduces measured characteristics of amorphous semiconductor thin film transistors in general, yielding a scatter of < 4%. © 1980-2012 IEEE.
Resumo:
In this paper, we present a physically-based compact model for the sub-threshold behavior in a TFT with an amorphous semiconductor channel. Both drift and diffusion current components are considered and combined using an harmonic average. Here, the diffusion component describes the exponential current behavior due to interfacial deep states, while the drift component is associated with presence of localized deep states formed by dangling bonds broken from weak bonds in the bulk and follows a power law. The proposed model yields good agreement with measured results. © 2013 IEEE.
Resumo:
Active Voltage Control (AVC) is an implementation of classic Proportional-Derivative (PD) control and multi-loop feedback control to force IGBT to follow a pre-set switching trajectory. The initial objective of AVC was mainly to synchronise the switching of IGBTs connected in series so as to realise voltage balancing between devices. For a single IGBT switching, the AVC reference needs further optimisation. Thus, a predictive manner of AVC reference generation is required to cope with the nonlinear IGBT switching parameters while performing low loss switching. In this paper, an improved AVC structure is adopted along with a revised reference which accommodates the IGBT nonlinearity during switching and is predictive based on current being switched. Experimental and simulation results show that close control of a single IGBT switching is realised. It is concluded that good performance can be obtained, but the proposed method needs careful stability analysis for parameter choice. © 2013 IEEE.
Resumo:
The brushless doubly fed induction generator (BDFIG) has been proposed as a viable alternative in wind turbines to the commonly used doubly fed induction generator (DFIG). The BDFIG retains the benefits of the DFIG, i.e. variable speed operation with a partially rated converter, but without the use of brush gear and slip rings, thereby conferring enhanced reliability. As low voltage ride-through (LVRT) performance of the DFIG-based wind turbine is well understood, this paper aims to analyze LVRT behavior of the BDFIG-based wind turbine in a similar way. In order to achieve this goal, the equivalence between their two-axis model parameters is investigated. The variation of flux linkages, back-EMFs and currents of both types of generator are elaborated during three phase voltage dips. Moreover, the structural differences between the two generators, which lead to different equivalent parameters and hence different LVRT capabilities, are investigated. The analytical results are verified via time-domain simulations for medium size wind turbine generators as well as experimental results of a voltage dip on a prototype 250 kVA BDFIG. © 2014 Elsevier B.V.
Resumo:
We review the potential of graphene in ultra-high speed circuits. To date, most of high-frequency graphene circuits typically consist of a single transistor integrated with a few passive components. The development of multi-transistor graphene integrated circuits operating at GHz frequencies can pave the way for applications in which high operating speed is traded off against power consumption and circuit complexity. Novel vertical and planar devices based on a combination of graphene and layered materials could broaden the scope and performances of future devices. © 2013 IEEE.
Resumo:
It has been previously observed that thin film transistors (TFTs) utilizing an amorphous indium gallium zinc oxide (a-IGZO) semiconducting channel suffer from a threshold voltage shift when subjected to a negative gate bias and light illumination simultaneously. In this work, a thermalization energy analysis has been applied to previously published data on negative bias under illumination stress (NBIS) in a-IGZO TFTs. A barrier to defect conversion of 0.65-0.75 eV is extracted, which is consistent with reported energies of oxygen vacancy migration. The attempt-to-escape frequency is extracted to be 10 6-107 s-1, which suggests a weak localization of carriers in band tail states over a 20-40 nm distance. Models for the NBIS mechanism based on charge trapping are reviewed and a defect pool model is proposed in which two distinct distributions of defect states exist in the a-IGZO band gap: these are associated with states that are formed as neutrally charged and 2+ charged oxygen vacancies at the time of film formation. In this model, threshold voltage shift is not due to a defect creation process, but to a change in the energy distribution of states in the band gap upon defect migration as this allows a state formed as a neutrally charged vacancy to be converted into one formed as a 2+ charged vacancy and vice versa. Carrier localization close to the defect migration site is necessary for the conversion process to take place, and such defect migration sites are associated with conduction and valence band tail states. Under negative gate bias stressing, the conduction band tail is depleted of carriers, but the bias is insufficient to accumulate holes in the valence band tail states, and so no threshold voltage shift results. It is only under illumination that the quasi Fermi level for holes is sufficiently lowered to allow occupation of valence band tail states. The resulting charge localization then allows a negative threshold voltage shift, but only under conditions of simultaneous negative gate bias and illumination, as observed experimentally as the NBIS effect. © 2014 AIP Publishing LLC.