241 resultados para TOPOLOGY OPTIMIZATION
Resumo:
A method for VVER-1000 fuel rearrangement optimization that takes into account both cladding durability and fuel burnup and which is suitable for any regime of normal reactor operation has been established. The main stages involved in solving the problem of fuel rearrangement optimization are discussed in detail. Using the proposed fuel rearrangement efficiency criterion, a simple example VVER-1000 fuel rearrangement optimization problem is solved under deterministic and uncertain conditions. It is shown that the deterministic and robust (in the face of uncertainty) solutions of the rearrangement optimization problem are similar in principle, but the robust solution is, as might be anticipated, more conservative. © 2013 Elsevier B.V.
Resumo:
A multi-objective optimization approach was proposed for multiphase orbital rendezvous missions and validated by application to a representative numerical problem. By comparing the Pareto fronts obtained using the proposed method, the relationships between the three objectives considered are revealed, and the influences of other mission parameters, such as the sensors' field of view, can also be analyzed effectively. For multiphase orbital rendezvous missions, the tradeoff relationships between the total velocity increment and the trajectory robustness index as well as between the total velocity increment and the time of flight are obvious and clear. However, the tradeoff relationship between the time of flight and the trajectory robustness index is weak, especially for the four- and five-phase missions examined. The proposed approach could be used to reorganize a stable rendezvous profile for an engineering rendezvous mission, when there is a failure that prevents the completion of the nominal mission.
Resumo:
This paper addresses the problem of low-rank distance matrix completion. This problem amounts to recover the missing entries of a distance matrix when the dimension of the data embedding space is possibly unknown but small compared to the number of considered data points. The focus is on high-dimensional problems. We recast the considered problem into an optimization problem over the set of low-rank positive semidefinite matrices and propose two efficient algorithms for low-rank distance matrix completion. In addition, we propose a strategy to determine the dimension of the embedding space. The resulting algorithms scale to high-dimensional problems and monotonically converge to a global solution of the problem. Finally, numerical experiments illustrate the good performance of the proposed algorithms on benchmarks. © 2011 IEEE.
Resumo:
We propose an algorithm for solving optimization problems defined on a subset of the cone of symmetric positive semidefinite matrices. This algorithm relies on the factorization X = Y Y T , where the number of columns of Y fixes an upper bound on the rank of the positive semidefinite matrix X. It is thus very effective for solving problems that have a low-rank solution. The factorization X = Y Y T leads to a reformulation of the original problem as an optimization on a particular quotient manifold. The present paper discusses the geometry of that manifold and derives a second-order optimization method with guaranteed quadratic convergence. It furthermore provides some conditions on the rank of the factorization to ensure equivalence with the original problem. In contrast to existing methods, the proposed algorithm converges monotonically to the sought solution. Its numerical efficiency is evaluated on two applications: the maximal cut of a graph and the problem of sparse principal component analysis. © 2010 Society for Industrial and Applied Mathematics.
Resumo:
In this paper, we adopt a differential-geometry viewpoint to tackle the problem of learning a distance online. As this problem can be cast into the estimation of a fixed-rank positive semidefinite (PSD) matrix, we develop algorithms that exploits the rich geometry structure of the set of fixed-rank PSD matrices. We propose a method which separately updates the subspace of the matrix and its projection onto that subspace. A proper weighting of the two iterations enables to continuously interpolate between the problem of learning a subspace and learning a distance when the subspace is fixed. © 2009 IEEE.
Resumo:
The present paper considers distributed consensus algorithms that involve N agents evolving on a connected compact homogeneous manifold. The agents track no external reference and communicate their relative state according to a communication graph. The consensus problem is formulated in terms of the extrema of a cost function. This leads to efficient gradient algorithms to synchronize (i.e., maximizing the consensus) or balance (i.e., minimizing the consensus) the agents; a convenient adaptation of the gradient algorithms is used when the communication graph is directed and time-varying. The cost function is linked to a specific centroid definition on manifolds, introduced here as the induced arithmetic mean, that is easily computable in closed form and may be of independent interest for a number of manifolds. The special orthogonal group SO (n) and the Grassmann manifold Grass (p, n) are treated as original examples. A link is also drawn with the many existing results on the circle. © 2009 Society for Industrial and Applied Mathematics.
Resumo:
This paper derives a new algorithm that performs independent component analysis (ICA) by optimizing the contrast function of the RADICAL algorithm. The core idea of the proposed optimization method is to combine the global search of a good initial condition with a gradient-descent algorithm. This new ICA algorithm performs faster than the RADICAL algorithm (based on Jacobi rotations) while still preserving, and even enhancing, the strong robustness properties that result from its contrast. © Springer-Verlag Berlin Heidelberg 2007.
Resumo:
DNA microarrays provide a huge amount of data and require therefore dimensionality reduction methods to extract meaningful biological information. Independent Component Analysis (ICA) was proposed by several authors as an interesting means. Unfortunately, experimental data are usually of poor quality- because of noise, outliers and lack of samples. Robustness to these hurdles will thus be a key feature for an ICA algorithm. This paper identifies a robust contrast function and proposes a new ICA algorithm. © 2007 IEEE.
Resumo:
This paper addresses the design of algorithms for the collective optimization of a cost function defined over average quantities in the presence of limited communication. We argue that several meaningful collective optimization problems can be formulated in this way. As an application of the proposed approach, we propose a novel algorithm that achieves synchronization or balancing in phase models of coupled oscillators under mild connectedness assumptions on the (possibly time-varying and unidirectional) communication graphs. © 2006 IEEE.
Resumo:
We study the problem of finding a local minimum of a multilinear function E over the discrete set {0,1}n. The search is achieved by a gradient-like system in [0,1]n with cost function E. Under mild restrictions on the metric, the stable attractors of the gradient-like system are shown to produce solutions of the problem, even when they are not in the vicinity of the discrete set {0,1}n. Moreover, the gradient-like system connects with interior point methods for linear programming and with the analog neural network studied by Vidyasagar (IEEE Trans. Automat. Control 40 (8) (1995) 1359), in the same context. © 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper reports on fuel design optimization of a PWR operating in a self sustainable Th-233U fuel cycle. Monte Carlo simulated annealing method was used in order to identify the fuel assembly configuration with the most attractive breeding performance. In previous studies, it was shown that breeding may be achieved by employing heterogeneous Seed-Blanket fuel geometry. The arrangement of seed and blanket pins within the assemblies may be determined by varying the designed parameters based on basic reactor physics phenomena which affect breeding. However, the amount of free parameters may still prove to be prohibitively large in order to systematically explore the design space for optimal solution. Therefore, the Monte Carlo annealing algorithm for neutronic optimization is applied in order to identify the most favorable design. The objective of simulated annealing optimization is to find a set of design parameters, which maximizes some given performance function (such as relative period of net breeding) under specified constraints (such as fuel cycle length). The first objective of the study was to demonstrate that the simulated annealing optimization algorithm will lead to the same fuel pins arrangement as was obtained in the previous studies which used only basic physics phenomena as guidance for optimization. In the second part of this work, the simulated annealing method was used to optimize fuel pins arrangement in much larger fuel assembly, where the basic physics intuition does not yield clearly optimal configuration. The simulated annealing method was found to be very efficient in selecting the optimal design in both cases. In the future, this method will be used for optimization of fuel assembly design with larger number of free parameters in order to determine the most favorable trade-off between the breeding performance and core average power density.
Resumo:
The design challenges of the fertile-free based fuel (FFF) can be addressed by careful and elaborate use of burnable poisons (BP). Practical fully FFF core design for PWR reactor has been reported in the past [1]. However, the burnable poison option used in the design resulted in significant end of cycle reactivity penalty due to incomplete BP depletion. Consequently, excessive Pu loading were required to maintain the target fuel cycle length, which in turn decreased the Pu burning efficiency. A systematic evaluation of commercially available BP materials in all configurations currently used in PWRs is the main objective of this work. The BP materials considered are Boron, Gd, Er, and Hf. The BP geometries were based on Wet Annular Burnable Absorber (WABA), Integral Fuel Burnable Absorber (IFBA), and Homogeneous poison/fuel mixtures. Several most promising combinations of BP designs were selected for the full core 3D simulation. All major core performance parameters for the analyzed cases are very close to those of a standard PWR with conventional UO2 fuel including possibility of reactivity control, power peaking factors, and cycle length. The MTC of all FFF cores was found at the full power conditions at all times and very close to that of the UO2 core. The Doppler coefficient of the FFF cores is also negative but somewhat lower in magnitude compared to UO2 core. The soluble boron worth of the FFF cores was calculated to be lower than that of the UO2 core by about a factor of two, which still allows the core reactivity control with acceptable soluble boron concentrations. The main conclusion of this work is that judicial application of burnable poisons for fertile free fuel has a potential to produce a core design with performance characteristics close to those of the reference PWR core with conventional UO2 fuel.
Resumo:
The problem of calculating the minimum lap or maneuver time of a nonlinear vehicle, which is linearized at each time step, is formulated as a convex optimization problem. The formulation provides an alternative to previously used quasi-steady-state analysis or nonlinear optimization. Key steps are: the use of model predictive control; expressing the minimum time problem as one of maximizing distance traveled along the track centerline; and linearizing the track and vehicle trajectories by expressing them as small displacements from a fixed reference. A consequence of linearizing the vehicle dynamics is that nonoptimal steering control action can be generated, but attention to the constraints and the cost function minimizes the effect. Optimal control actions and vehicle responses for a 90 deg bend are presented and compared to the nonconvex nonlinear programming solution. Copyright © 2013 by ASME.
Resumo:
A sensitivity study has been conducted to assess the robustness of the conclusions presented in the MIT Fuel Cycle Study. The Once Through Cycle (OTC) is considered as the base-line case, while advanced technologies with fuel recycling characterize the alternative fuel cycles. The options include limited recycling in LWRs and full recycling in fast reactors and in high conversion LWRs. Fast reactor technologies studied include both oxide and metal fueled reactors. The analysis allowed optimization of the fast reactor conversion ratio with respect to desired fuel cycle performance characteristics. The following parameters were found to significantly affect the performance of recycling technologies and their penetration over time: Capacity Factors of the fuel cycle facilities, Spent Fuel Cooling Time, Thermal Reprocessing Introduction Date, and incore and Out-of-core TRU Inventory Requirements for recycling technology. An optimization scheme of the nuclear fuel cycle is proposed. Optimization criteria and metrics of interest for different stakeholders in the fuel cycle (economics, waste management, environmental impact, etc.) are utilized for two different optimization techniques (linear and stochastic). Preliminary results covering single and multi-variable and single and multi-objective optimization demonstrate the viability of the optimization scheme.