231 resultados para Scoliosis research society outcomes instrument


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new route towards customizing the surface properties of microfluidic channels, by a forest of in situ grown multiwalled carbon nanotubes (CNT). Local distortions of the electrical field direction are used to control the direction of the carbon nanotube growth. © 2005 Materials Research Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone is an anisotropic material, and its mechanical properties are determined by its microstructure as well as its composition. Mechanical properties of bone are a consequence of the proportions of, and the interactions between, mineral, collagen and water. Water plays an important role in maintaining the mechanical integrity of the composite, but the manner in which water interacts within the ultrastructure is unclear. Dentine being an isotropic two-dimensional structure presents a homogenous composite to examine the dehydration effects. Nanoindentation methods for determining the viscoelastic properties have recently been developed and are a subject of great interest. Here, one method based on elastic-viscoelastic correspondence for 'ramp and hold' creep testing (Oyen, J. Mater. Res., 2005) has been used to analyze viscoelastic behavior of polymeric and biological materials. The method of 'ramp and hold' allows the shear modulus at time zero to be determined from fitting of the displacement during the maximum load hold. Changes in the viscoelastic properties of bone and dentine were examined as the material was systematically dehydrated in a series of water:solvent mixes. Samples of equine dentine were sectioned and cryo-polished. Shear modulus was obtained by nanoindentation using spherical indenters with a maximum load hold of 120s. Samples were tested in different solvent concentrations sequentially, 70% ethanol to 50% ethanol, 70 % ethanol to 100% ethanol, 70% ethanol to 70% methanol to 100% methanol, and 70% ethanol to 100% acetone, after storage in each condition for 24h. By selectively removing and then replacing water from the composite, insights in to the ultrastructure of the tissue can be gained from the corresponding changes in the experimentally determined moduli, as well as an understanding of the complete reversibility of the dehydration process. © 2006 Materials Research Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental observations of the time-dependent mechanical responses of collagenous tissues have demonstrated behavior that deviates from standard treatments of linear or quasi-linear viscoelasticity. In particular, time-dependent deformation can be strongly coupled to strain level, and strain-rate independence can be observed under monotonic loading, even for a tissue with dramatic stress relaxation. It was postulated that this nonlinearity is fundamentally associated with gradual recruitment of individual collagen fibrils during applied mechanical loading. Based on previously observed experimental results for the time-dependent response of collagenous soft tissues, a model is developed to describe the mechanical behavior of these tissues under uniaxial loading. Tissue stresses, under applied strain-controlled loading, are assumed to be a sum of elastic and viscoelastic stress contributions. The relative contributions of elastic and viscoelastic stresses is assumed to vary with strain level, leading to strain- and time-dependent mechanical behavior. The model formulation is examined under conditions of monotonic loading at varying constant strain rates and stress-relaxation at different applied strain levels. The model is compared with experimental data for a membranous biological soft tissue, the amniotic sac, and is found to agree well with experimental results. The limiting behavior of the novel model, at large strains relative to the collagen recruitment, is consistent with the quasi-linear viscoelastic approach. © 2006 Materials Research Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An alternative method for seeding catalyst nanoparticles for carbon nanotubes and nanowires growth is presented. Ni nanoparticles are formed inside a 450 nm SiO2 film on (100) Si wafers through the implantation of Ni ions at fluences of 7.5×1015 and 1.7×1016 ions.cm-2 and post-annealing treatments at 700, 900 and 1100°C. After exposed to the surface by HF dip etching, the Ni nanoparticles are used as catalyst for the growth of vertically aligned carbon nanotubes by direct current plasma enhanced chemical vapor deposition. © 2007 Materials Research Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Humans perform fascinating science experiments at home on a daily basis when they undertake the modification of natural and naturally-derived materials by a cooking process prior to consumption. The material properties of such foods are of interest to food scientists (texture is often fundamental to food acceptability), oral biologists (foods modulate feeding behavior), anthropologists (cooking is probably as old as the genus Homo and distinguishes us from all other creatures) and dentists (foods interact with tooth and tooth replacement materials). Materials scientists may be interested in the drastic changes in food properties observed over relatively short cooking times. In the current study, the mechanical properties of one of the most common (and oldest at 4,000+ years) foods on earth, the noodle, were examined as a function of cooking time. Two types of noodles were studied, each made from natural materials (wheat flour, salt, alkali and water) by kneading dough and passing them through a pasta-making machine. These were boiled for between 2-14 min and tested at regular intervals from raw to an overcooked state. Cyclic tensile tests at small strain levels were used to examine energy dissipation characteristics. Energy dissipation was >50% per cycle in uncooked noodles, but decreased by an order of magnitude with cooking. Fractional dissipation values remained approximately constant at cooking times greater than 7 min. Overall, a greater effect of cooking was on viscoplastic dissipation characteristics rather than on fracture resistance. The results of the current study plot the evolution of a viscoplastic mixture into an essentially elastic material in the space of 7 minutes and have broad implications for understanding what cooking does to food materials. In particular, they suggest that textural assessment by consumers of the optimally cooked state of food has a definite physical definition. © 2007 Materials Research Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Indentation techniques are employed for the measurement of mechanical properties of a wide range of materials. In particular, techniques focused at small length-scales, such as nanoindentation and AFM indentation, allow for local characterization of material properties in heterogeneous materials including natural tissues and biomimetic materials. Typical elastic analysis for spherical indentation is applicable in the absence of time-dependent deformation, but is inappropriate for materials with time-dependent responses. Recent analyses for the viscoelastic indentation problem, based on elastic-viscoelastic correspondence, have begun to address the issue of time-dependent deformation during an indentation test. The viscoelastic analysis has been shown to fit experimental indentation data well, and has been demonstrated as useful for characterization of viscoelasticity in polymeric materials and in hydrated mineralized tissues. However, a viscoelastic analysis is not necessarily sufficient for multi-phase materials with fluid flow. In the current work, a poroelastic analysis-based on fluid motion through a porous elastic network-is used to examine spherical indentation creep responses of hydrated biological materials. Both analytical and finite element approaches are considered for the poroelastic Hertzian indentation problem. Modeling results are compared with experimental data from nanoindentation of hydrated bone immersed in water and polar solvents (ethanol, methanol, acetone). Baseline (water-immersed) bone responses are characterized using the poroelastic model and numerical results are compared with altered hydration states due to polar solvents. © 2007 Materials Research Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the current study, the effects of polar solvents on tissue volume and mechanical properties are considered. Area shrinkage measurements are conducted for mineralized bone tissue samples soaked in polar solvents. Area shrinkage is used to calculate approximate linear and volume shrinkage. Results are compared with viscoelastic mechanical parameters for bone in the same solvents (as measured previously) and with both shrinkage measurements and mechanical data for nonmineralized tissues, as taken from the existing literature. As expected, the shrinkage of mineralized tissues is minimal when compared with shrinkage of nonmineralized tissues immersed in the same polar solvents. The mechanical changes in bone are also substantially less than in nonmineralized tissues. The largest stiffness values are found in shrunken bone samples (immersed in acetone and ethanol). The mineral phase in bone thus resists tissue shrinkage that would otherwise occur in the pure soft tissue phase. © 2007 Materials Research Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zinc oxide is a versatile II-VI naturally n-type semiconductor that exhibits piezoelectric properties. By controlling the growth kinetics during a simple carbothermal reduction process a wide range of 1D nanostructures such as nanowires, nanobelts, and nanotetrapods have been synthesized. The driving force: for the nanostructure growth is the Zn vapour supersaturation and supply rate which, if known, can be used to predict and explain the type of crystal structure that results. A model which attempts to determine the Zn vapour concentration as a function of position in the growth furnace is described. A numerical simulation package, COMSOL, was used to simultaneously model the effects of fluid flow, diffusion and heat transfer in a tube furnace made specifically for ZnO nanostructure growth. Parameters such as the temperature, pressure, and flow rate are used as inputs to the model to show the effect that each one has on the Zn concentration profile. An experimental parametric study of ZnO nanostructure growth was also conducted and compared to the model predictions for the Zn concentration in the tube. © 2008 Materials Research Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of mechanical constraint imposed by device geometry upon the switching response of a ferroelectric thin film memory capacitor is investigated. The memory capacitor was represented by two-dimensional ferroelectric islands of different aspect ratio, mechanically constrained by surrounding materials. Its ferroelectric non-linear behaviour was modeled by a crystal plasticity constitutive law and calculated using the finite element method. The switching response of the device, in terms of remnant charge storage, was determined as a function of geometry and constraint. The switching response under applied in-plane tensile stress and hydrostatic pressure was also studied experimentally. Our results showed that (1) the capacitor's aspect ratio could significantly affect the clamping behaviour and thus the remnant polarization, (2) it was possible to maximise the switching charge through the optimisation of the device geometry, and (3) it is possible to find a critical switching stress at zero electric field and a critical coercive field at zero residual stress. © 2009 Materials Research Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lab-on-a-chip (LOC) is one of the most important microsystem applications with promise for use in microanalysis, drug development, diagnosis of illness and diseases etc. LOC typically consists of two main components: microfluidics and sensors. Integration of microfluidics and sensors on a single chip can greatly enhance the efficiency of biochemical reactions and the sensitivity of detection, increase the reaction/detection speed, and reduce the potential cross-contamination, fabrication time and cost etc. However, the mechanisms generally used for microfluidics and sensors are different, making the integration of the two main components complicated and increases the cost of the systems. A lab-on-a-chip system based on a single surface acoustic wave (SAW) actuation mechanism is proposed. SAW devices were fabricated on nanocrystalline ZnO thin films deposited on Si substrates using sputtering. Coupling of acoustic waves into a liquid induces acoustic streaming and motion of droplets. A streaming velocity up to ∼ 5cm/s and droplet pumping speeds of ∼lcm/s were obtained. It was also found that a higher order mode wave, the Sezawa wave is more effective in streaming and transportation of microdroplets. The ZnO SAW sensor has been used for prostate antigen/antibody biorecognition systems, demonstrated the feasibility of using a single actuation mechanism for lab-on-a-chip applications. © 2010 Materials Research Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A constitutive equation is developed for geometrically-similar sharp indentation of a material capable of elastic, viscous, and plastic deformation. The equation is based on a series of elements consisting of a quadratic (reversible) spring, a quadratic (time-dependent, reversible) dashpot, and a quadratic (time-independent, irreversible) slider-essentially modifying a model for an elastic-perfectly plastic material by incorporating a creeping component. Load-displacement solutions to the constitutive equation are obtained for load-controlled indentation during constant loading-rate testing. A characteristic of the responses is the appearance of a forward-displacing "nose" during unloading of load-controlled systems (e.g., magnetic-coil-driven "nanoindentation" systems). Even in the absence of this nose, and the associated initial negative unloading tangent, load-displacement traces (and hence inferred modulus and hardness values) are significantly perturbed on the addition of the viscous component. The viscous-elastic-plastic (VEP) model shows promise for obtaining material properties (elastic modulus, hardness, time-dependence) of time-dependent materials during indentation experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone plays a key role in the paleontological and archeological records and can provide insight into the biology, ecology and the environment of ancient vertebrates. Examination of bone at the tissue level reveals a definitive relationship between nanomechanical properties and the local organic content, mineral content, and microstructural organization. However, it is unclear as to how these properties change following fossilization, or diagenesis, where the organic phase is rapidly removed and the remaining mineral phase is reinforced by the deposition of apatites, calcites, and other minerals. While the process of diagenesis is poorly understood, its outcome clearly results in the potential for dramatic alteration of the mechanical response of biological tissues. In this study, fossilized specimens of mammalian long bones, collected from Colorado and Wyoming, were studied for mechanical variations. Nanoindentation performed in both longitudinal and transverse directions revealed preservation of bone's natural anisotropy as transverse modulus values were consistently smaller than longitudinal values. Additionally, modulus values of fossilized bone from 35.0 to 89.1 GPa increased linearly with logarithm of the sample's age. Future studies will aim to clarify what mechanical and material elements of bone are retained during diagenesis as bone becomes part of the geologic milieu. © 2007 Materials Research Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A biomimetic reactor has been developed to synthesize hydroxyapatite- gelatin (HAP-GEL) nanocomposites that mimic ultra-structures of natural bone. We hypothesize that in the reactor, gelatin concentration controls morphology and packing structures of HAP crystals. To test the hypothesis, three types of mechanical tests were conducted, including nanoindentation, compression, and fracture tests. Nanoindentation tests in conjunction with computer modeling were used to assess effects on gelatin-induced microstructures of HAP. The results showed that increasing gelatin content increased both the plane strain modulus and the fracture toughness. The gelatin appeared to shorten the HAP crystal distance, which consolidated the internal structure of the composite and made the material more rigid. The fracture toughness KIC increased partially due to the effect of fiber bridging between gelatin molecules. The highest fracture toughness (1.12 MPa·1/2) was equivalent to that of pure hydroxyapatite. The compressive strength of the HAP-GEL (107.7±26.8 MPa) was, however, less sensitive to microstructural changes and was within the range of natural cortical bone (human 170 MPa, pig: 100 MPa). The compression strength was dominated by void inclusions while the nanoindentation response reflected ultra-structural arrangement of the crystals. The gelatin concentration is likely to modify crystal arrangement as demonstrated in TEM experiments but not void distribution at macroscopic levels. © 2006 Materials Research Society.