209 resultados para Pipe, Concrete


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of an experimental and numerical investigation involving unstrengthened reinforced concrete (RC) T-beams and precracked RC T-beams strengthened in shear with prestressed carbon fiber-reinforced polymer (CFRP) straps are presented and discussed. The results provide insights into the influence of load history and beam depth on the structural behavior of both unstrengthened and strengthened beams. The strengthened beams exhibited capacity enhancements of 21.6 to 46% compared to the equivalent unstrengthened beams, demonstrating the potential effectiveness of the prestressed CFRP strap system. Nonlinear finite element (FE) predictions, which incorporated the load history, reproduced the observed experimental behavior but either underestimated or overestimated the post-cracking stiffness of the beams and strap strain at higher load levels. These limitations were attributed to the concrete shear models used in the FE analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine the load at which FRPs debond from concrete beams using global-energy-balance-based fracture mechanics concepts, the single most important parameter is the fracture energy of the concrete-FRP interface, which is easy to define but difficult to determine. Debonding propagates in the narrow zone of concrete, between the FRP and the (tension) steel reinforcement bars in the beam, and the presence of nearby steel bars prevents the fracture process zone, which in concrete is normally extensive, from developing fully. The paper presents a detailed discussion of the mechanism of the FRP debonding, and shows that the initiation of debonding can be regarded as a Mode I (tensile) fracture in concrete, despite being loaded primarily in shear. It is shown that the incorporation of this fracture energy in the debonding model developed by the authors, details of which are presented elsewhere, gives predictions that match the test results reported in the literature. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of changes in vibration properties for global damage detection and monitoring of existing concrete structures has received great research attention in the last three decades. To track changes in vibration properties experimentally, structures have been artificially damaged by a variety of scenarios. However, this procedure does not represent realistically the whole design-life degradation of concrete structures. This paper presents experimental work on a set of damaged reinforced concrete beams due to different loading regimes to assess the sensitivity of vibration characteristics. Of the total set, three beams were subject to incremental static loading up to failure to simulate overloading, and two beams subject to 15 million loading cycles with varying amplitudes to produce an accelerated whole-life degradation scenario. To assess the vibration behaviour in both cases, swept sine and harmonic excitations were conducted at every damage level. The results show that resonant frequencies are not sensitive enough to damage due to cyclic loading, whereas cosh spectral and root mean square distances are more sensitive, yet more scattered. In addition, changes in non-linearity follow a softening trend for beams under incremental static loading, whilst they are significantly inconsistent for beams under cyclic loading. Amongst all examined characteristics, changes in modal stiffness are found to be most sensitive to damage and least scattered, but modal stiffness is tedious to compute due mainly to the difficulty of constructing restoring force surfaces from field measurements. © (2013) Trans Tech Publications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aging concrete infrastructure in developed economies and more recently constructed concrete infrastructure in the developing world are frequently found to be deficient in structural strength relative to current needs. This can be attributed to a variety of factors including deterioration, construction defects, accidental damage, changes in understanding and failure to design for future loading requirements. Strengthening existing concrete structures can be a cost and carbon effective alternative to replacement. A competitive option for the strengthening of concrete slab-on-beam structures that are deficient in shear capacity is the U-wrapping of the down-stand beam portion of the shear span with externally bonded FRP fabric. While guidance exists for the strengthening of reinforced concrete by U-wrapping, the interaction between internal steel reinforcement, concrete and external FRP in the presence of a dominant diagonal shear crack is not well understood. An approach adopted in previous work has been to explore this interaction through conventional push-off testing. In conventional push-off testing, unlike in a beam, the shear plane is parallel to the direction of loading and perpendicular to the principal fibre orientation. This paper presents a novel push-off test variation in which the shear plane is inclined at 45° to the direction of loading and the principal fibre orientation. A variety of reinforcement ratios, FRP thicknesses and FRP end conditions are modelled. The implications of inclined cracking on debonding of FRP are investigated. The suitability and relevance of inclined push-off tests for further work in this area is also assessed. © 2013, NetComposite Limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study intends to evaluate the sensitivity of self-compacting concrete (SCC) mixtures, cast in two different laboratories of the European Union, with a focus on rheological parameters, mechanical characteristics and durability properties. Six SCC mixtures with different water-to-binder ratios and silica fume levels of cement replacement and two normally vibrated concrete (NVC) mixtures have been compared. It has been found that the reproducibility of similar mixtures is possible, when using different constituent materials that conform to the European Standards. Comparable rheological, mechanical and durability properties can be achieved. Open porosity and sorptivity appear to be more sensitive than chloride penetrability. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self Compacting Concrete (SCC) offers a wide variety of advantages during casting. Considering the worldwide uniformity of guidelines concerning the composition and casting instructions for the production of fresh SCC, there is a need to explore the reproducibility of similar self-compacting concrete batches between different countries. In the present study, the fresh properties of similar SCC batches produced in two different laboratories of the European Union are being compared and evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although self compacting concrete (SCC) is currently used in many countries, there is a fundamental lack of the intrinsic durability of the material itself. This article presents the outcomes from a research program on principal indicators that define the durability of SCC (sorptivity, porosity and chloride ion permeability) and compares these indicators with the corresponding parameters of conventional concrete. The results show, for the first time, that there is a correlation between the various durability indicators for the specific filler additives used in the mix designs incorporated in this paper. Such a correlation may be used to assess the durability of SCC without the need to rely on time consuming artificial weathering experimental procedures. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of tests on filigree slab joints was performed with the aim of assessing whether such joints can be reliably used in the construction of two-way spanning reinforced concrete slabs. The test results were compared with code requirements. Adequate joint performance is shown to be achievable when the joints are appropriately detailed. Further research is recommended for the formulation of a more generic understanding when the design parameters are varied from those studied in this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classification of a concrete mixture as self-compacting (SCC) is performed by a series of empirical characterization tests that have been designed to assess not only the flowability of the mixture but also its segregation resistance and filling ability. The objective of the present work is to correlate the rheological parameters of SCC matrix, yield stress and plastic viscosity, to slump flow measurements. The focus of the slump flow test investigation was centered on the fully yielded flow regime and an empirical model relating the yield stress to material and flow parameters is proposed. Our experimental data revealed that the time for a spread of 500 mm which is used in engineering practice as reference for measurement parameters, is an arbitrary choice. Our findings indicate that the non-dimensional final spread is linearly related to the non-dimensional yield-stress. Finally, there are strong indications that the non-dimensional viscosity of the mixture is associated with the non-dimensional final spread as well as the stopping time of the slump flow; this experimental data set suggests an exponential decay of the final spread and stopping time with viscosity. © Appl. Rheol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uniquely, China employs MgO already contained in cement clinker or as an expansive additive to compensate for the thermal shrinkage of mass concrete, particularly dam concrete, with almost 40 years' experience in both research activities and industrial applications. Compensating shrinkage with expansion produced by MgO has been proved to effectively prevent thermal cracking of mass concrete, and reduce the cost of temperature control measures and speed up the construction process. Moreover, the expansion properties of MgO could be designed flexibly, through adjusting its microstructure by changing the calcination conditions (calcining temperature and residence time). The collective knowledge and experience of MgO expansive cement and concrete is worthy of sharing with relevant engineers and researchers globally but dissemination has been hindered as most of the relevant literature is published in Chinese. This paper reviews the history, state-of-the-art progress and future research needs in the field of MgO expansive cement and concrete. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large concrete structures need to be inspected in order to assess their current physical and functional state, to predict future conditions, to support investment planning and decision making, and to allocate limited maintenance and rehabilitation resources. Current procedures in condition and safety assessment of large concrete structures are performed manually leading to subjective and unreliable results, costly and time-consuming data collection, and safety issues. To address these limitations, automated machine vision-based inspection procedures have increasingly been proposed by the research community. This paper presents current achievements and open challenges in vision-based inspection of large concrete structures. First, the general concept of Building Information Modeling is introduced. Then, vision-based 3D reconstruction and as-built spatial modeling of concrete civil infrastructure are presented. Following that, the focus is set on structural member recognition as well as on concrete damage detection and assessment exemplified for concrete columns. Although some challenges are still under investigation, it can be concluded that vision-based inspection methods have significantly improved over the last 10 years, and now, as-built spatial modeling as well as damage detection and assessment of large concrete structures have the potential to be fully automated.