225 resultados para Fast Rayleigh Fading


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nuclear power generation offers a reliable, low-impact and large-scale alternative to fossil fuels. However, concerns exist over the safety and sustainability of this method of power production, and it remains unpopular with some governments and pressure groups throughout the world. Fast thorium fuelled accelerator-driven sub-critical reactors (ADSRs) offer a possible route to providing further re-assurance regarding these concerns on account of their properties of enhanced safety through sub-critical operation combined with reduced actinide waste production from the thorium fuel source. The appropriate sub-critical margin at which these reactors should operate is the subject of continued debate. Commercial interests favour a small sub-critical margin in order to minimise the size of the accelerator needed for a given power output, whilst enhanced safety would be better satisfied through larger sub-critical margins to further minimise the possibility of a criticality excursion. Against this background, this paper examines some of the issues affecting reactor safety inherent within thorium fuel sources resulting from the essential Th90232→Th90233→Pa91233→U92233 breeding chain. Differences in the decay half-lives and fission and capture cross-sections of 233Pa and 233U can result in significant changes in the reactivity of the fuel following changes in the reactor power. Reactor operation is represented using a homogeneous lumped fast reactor model that can simulate the evolution of actinides and reactivity variations to first-order accuracy. The reactivity of the fuel is shown to increase significantly following a loss of power to the accelerator. Where the sub-critical operating margins are small this can result in a criticality excursion unless some form of additional intervention is made, for example through the insertion of control rods. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power allocation is studied for fixed-rate transmission over block-fading channels with arbitrary continuous fading distributions and perfect transmitter and receiver channel state information. Both short- and long-term power constraints for arbitrary input distributions are considered. Optimal power allocation schemes are shown to be direct applications of previous results in the literature. It is shown that the short- and long-term outage exponents for arbitrary input distributions are related through a simple formula. The formula is useful to predict when the delay-limited capacity is positive. Furthermore, this characterization is useful for the design of efficient coding schemes for this relevant channel model. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Tandem PiN Schottky (TPS) rectifier features lowly-doped p-layers in both active and termination regions, and is applied in 600-V rating for the first time. In the active region, the Schottky contact is in series connection with a transparent p-layer, leading to a superior forward performance than the conventional diodes. In addition, due to the benefit of moderate hole injection from the p-layer, the TPS offers a better trade-off between the on-state voltage and the switching speed. The active p-layer also helps to stabilise the Schottky contact, and hence the electrical data distributions are more concentrated. Regarding the floating p-layer in the termination region, its purpose is to reduce the peak electric fields, and the TPS demonstrates a high breakdown voltage with a compact termination width, less than 70% of the state-of-the-art devices on the market. Experimental results have shown that the 600-V TPS rectifier has an ultra-low on-state voltage of 0.98 V at 250 A/cm 2, a fast turn-off time of 75 ns by the standard RG1 test (I F=0.5A, I R=1A, and I RR=0.25A) and a breakdown voltage over 720 V. It is noteworthy that the p-layers in the active and termination regions can be formed at no extra cost for the use of self-alignment process. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a typical experiment on decision making, one out of two possible stimuli is displayed and observers decide which one was presented. Recently, Stanford and colleagues (2010) introduced a new variant of this classical one-stimulus presentation paradigm to investigate the speed of decision making. They found evidence for "perceptual decision making in less than 30 ms". Here, we extended this one-stimulus compelled-response paradigm to a two-stimulus compelled-response paradigm in which a vernier was followed immediately by a second vernier with opposite offset direction. The two verniers and their offsets fuse. Only one vernier is perceived. When observers are asked to indicate the offset direction of the fused vernier, the offset of the second vernier dominates perception. Even for long vernier durations, the second vernier dominates decisions indicating that decision making can take substantial time. In accordance with previous studies, we suggest that our results are best explained with a two-stage model of decision making where a leaky evidence integration stage precedes a race-to-threshold process. © 2013 Rüter et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low attenuation of Sezawa modes operating at GHz frequencies in ZnO/GaAs systems immersed in liquid helium has been observed. This unexpected behaviour for Rayleigh-like surface acoustic waves (SAWs) is explained in terms of the calculated depth profiles of their acoustic Poynting vectors. This analysis allows reproduction of the experimental dispersion of the attenuation coefficient. In addition, the high attenuation of the Rayleigh mode is compensated by the strengthening provided by the ZnO layer. The introduction of the ZnO film will enable the operation of SAW-driven single-photon sources in GaAs-based systems with the best thermal stability provided by the liquid helium bath. © 2013 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a methodology that enables fast and reasonably accurate prediction of the reliability of power electronic modules featuring IGBTs and p-i-n diodes, by taking into account thermo-mechanical failure mechanisms of the devices and their associated packaging. In brief, the proposed simulation framework performs two main tasks which are tightly linked together: (i) the generation of the power devices' transient thermal response for realistic long load cycles and (ii) the prediction of the power modules' lifetime based on the obtained temperature profiles. In doing so the first task employs compact, physics-based device models, power losses lookup tables and polynomials and combined material-failure and thermal modelling, while the second task uses advanced reliability tests for failure mode and time-to-failure estimation. The proposed technique is intended to be utilised as a design/optimisation tool for reliable power electronic converters, since it allows easy and fast investigation of the effects that changes in circuit topology or devices' characteristics and packaging have on the reliability of the employed power electronic modules. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An established Stochastic Reactor Model (SRM) is used to simulate the transition from Spark Ignition (SI) to Homogeneous Charge Compression Ignition (HCCI) combustion mode in a four cylinder in-line four-stroke naturally aspirated direct injection SI engine with cam profile switching. The SRM is coupled with GT-Power, a one-dimensional engine simulation tool used for modelling engine breathing during the open valve portion of the engine cycle, enabling multi-cycle simulations. The mode change is achieved by switching the cam profiles and phasing, resulting in a Negative Valve Overlap (NVO), opening the throttle, advancing the spark timing and reducing the fuel mass as well as using a pilot injection. A proven technique for tabulating the model is used to create look-up tables in both SI and HCCI modes. In HCCI mode several tables are required, including tables for the first NVO, transient valve timing NVO, transient valve timing HCCI and steady valve timing HCCI and NVO. This results in the ability to simulate the transition with detailed chemistry in very short computation times. The tables are then used to optimise the transition with the goal of reducing NO x emissions and fluctuations in IMEP. Copyright © 2010 SAE International.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fast response sensor for measuring carbon dioxide concentration has been developed for laboratory research and tested on a spark ignition engine. The sensor uses the well known infra-red absorption technique with a miniaturized detection system and short capillary sampling tubes, giving a time constant of approximately 5 milliseconds; this is sufficiently fast to observe changes in CO2 levels on a cycle-by-cycle basis under normal operating conditions. The sensor is easily located in the exhaust system and operates continuously. The sensor was tested on a standard production four cylinder spark-ignition engine to observe changes in CO2 concentration in exhaust gas under steady state and transient operating conditions. The processed sensor signal was compared to a standard air-to-fuel ratio (AFR) sensor in the exhaust stream and the results are presented here. The high frequency response CO2 measurements give new insights into both engine and catalyst transient operation. Copyright © 1999 Society of Automotive Engineers, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding mixture formation phenomena during the first few cycles of an engine cold start is extremely important for achieving the minimum engine-out emission levels at the time when the catalytic converter is not yet operational. Of special importance is the structure of the charge (film, droplets and vapour) which enters the cylinder during this time interval as well as its concentration profile. However, direct experimental studies of the fuel behaviour in the inlet port have so far been less than fully successful due to the brevity of the process and lack of a suitable experimental technique. We present measurements of the hydrocarbon (HC) concentration in the manifold and port of a production SI engine using the Fast Response Flame Ionisation Detector (FRFID). It has been widely reported in the past few years how the FRFID can be used to study the exhaust and in-cylinder HC concentrations with a time resolution of a few degrees of crank angle, and the device has contributed significantly to the understanding of unburned HC emissions. Using the FRFID in the inlet manifold is difficult because of the presence of liquid droplets, and the low and fluctuating pressure levels, which leads to significant changes in the response time of the instrument. However, using recently developed procedures to correct for the errors caused by these effects, the concentration at the sampling point can be reconstructed to align the FRFID signal with actual events in the engine. © 1996 Society of Automotive Engineers, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classical Rayleigh quotient iteration (RQI) allows one to compute a one-dimensional invariant subspace of a symmetric matrix A. Here we propose a generalization of the RQI which computes a p-dimensional invariant subspace of A. Cubic convergence is preserved and the cost per iteration is low compared to other methods proposed in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classical Rayleigh Quotient Iteration (RQI) computes a 1-dimensional invariant subspace of a symmetric matrix A with cubic convergence. We propose a generalization of the RQI which computes a p-dimensional invariant subspace of A. The geometry of the algorithm on the Grassmann manifold Gr(p,n) is developed to show cubic convergence and to draw connections with recently proposed Newton algorithms on Riemannian manifolds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we performed an evaluation of decay heat power of advanced, fast spectrum, lead and molten salt-cooled reactors, with flexible conversion ratio. The decay heat power was calculated using the BGCore computer code, which explicitly tracks over 1700 isotopes in the fuel throughout its burnup and subsequent decay. In the first stage, the capability of the BGCore code to accurately predict the decay heat power was verified by performing a benchmark calculation for a typical UO2 fuel in a Pressurized Water Reactor environment against the (ANSI/ANS-5.1-2005, "Decay Heat Power in Light Water Reactors," American National Standard) standard. Very good agreement (within 5%) between the two methods was obtained. Once BGCore calculation capabilities were verified, we calculated decay power for fast reactors with different coolants and conversion ratios, for which no standard procedure is currently available. Notable differences were observed for the decay power of the advanced reactor as compared with the conventional UO2 LWR. The importance of the observed differences was demonstrated by performing a simulation of a Station Blackout transient with the RELAP5 computer code for a lead-cooled fast reactor. The simulation was performed twice: using the code-default ANS-79 decay heat curve and using the curve calculated specifically for the studied core by BGCore code. The differences in the decay heat power resulted in failure to meet maximum cladding temperature limit criteria by ∼100 °C in the latter case, while in the transient simulation with the ANS-79 decay heat curve, all safety limits were satisfied. The results of this study show that the design of new reactor safety systems must be based on decay power curves specific to each individual case in order to assure the desired performance of these systems. © 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. The performance achievable by the unity conversion ratio cores of these reactors was compared to an existing supercritical carbon dioxide-cooled (S-CO2) fast reactor design and an uprated version of an existing sodium-cooled fast reactor. All concepts have cores rated at 2400 MWt. The cores of the liquid-cooled reactors are placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchangers (IHXs) coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. The S-CO2 reactor is directly coupled to the S-CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced reactor vessel auxiliary cooling system (RVACS) and a passive secondary auxiliary cooling system (PSACS). The selection of the water-cooled versus air-cooled heat sink for the PSACS as well as the analysis of the probability that the PSACS may fail to complete its mission was performed using risk-informed methodology. In addition to these features, all reactors were designed to be self-controllable. Further, the liquid-cooled reactors utilized common passive decay heat removal systems whereas the S-CO2 uses reliable battery powered blowers for post-LOCA decay heat removal to provide flow in well defined regimes and to accommodate inadvertent bypass flows. The multiple design limits and challenges which constrained the execution of the four fast reactor concepts are elaborated. These include principally neutronics and materials challenges. The neutronic challenges are the large positive coolant reactivity feedback, small fuel temperature coefficient, small effective delayed neutron fraction, large reactivity swing and the transition between different conversion ratio cores. The burnup, temperature and fluence constraints on fuels, cladding and vessel materials are elaborated for three categories of material - materials currently available, available on a relatively short time scale and available only with significant development effort. The selected fuels are the metallic U-TRU-Zr (10% Zr) for unity conversion ratio and TRU-Zr (75% Zr) for zero conversion ratio. The principal selected cladding and vessel materials are HT-9 and A533 or A508, respectively, for current availability, T-91 and 9Cr-1Mo steel for relatively short-term availability and oxide dispersion strengthened ferritic steel (ODS) available only with significant development. © 2009 Elsevier B.V. All rights reserved.