210 resultados para Ceramics Techniques
Resumo:
This research proposes a method for extracting technology intelligence (TI) systematically from a large set of document data. To do this, the internal and external sources in the form of documents, which might be valuable for TI, are first identified. Then the existing techniques and software systems applicable to document analysis are examined. Finally, based on the reviews, a document-mining framework designed for TI is suggested and guidelines for software selection are proposed. The research output is expected to support intelligence operatives in finding suitable techniques and software systems for getting value from document-mining and thus facilitate effective knowledge management. Copyright © 2012 Inderscience Enterprises Ltd.
Resumo:
This paper presents the development and the application of a multi-objective optimization framework for the design of two-dimensional multi-element high-lift airfoils. An innovative and efficient optimization algorithm, namely Multi-Objective Tabu Search (MOTS), has been selected as core of the framework. The flow-field around the multi-element configuration is simulated using the commercial computational fluid dynamics (cfd) suite Ansys cfx. Elements shape and deployment settings have been considered as design variables in the optimization of the Garteur A310 airfoil, as presented here. A validation and verification process of the cfd simulation for the Garteur airfoil is performed using available wind tunnel data. Two design examples are presented in this study: a single-point optimization aiming at concurrently increasing the lift and drag performance of the test case at a fixed angle of attack and a multi-point optimization. The latter aims at introducing operational robustness and off-design performance into the design process. Finally, the performance of the MOTS algorithm is assessed by comparison with the leading NSGA-II (Non-dominated Sorting Genetic Algorithm) optimization strategy. An equivalent framework developed by the authors within the industrial sponsor environment is used for the comparison. To eliminate cfd solver dependencies three optimum solutions from the Pareto optimal set have been cross-validated. As a result of this study MOTS has been demonstrated to be an efficient and effective algorithm for aerodynamic optimizations. Copyright © 2012 Tech Science Press.
Resumo:
The prediction of turbulent oscillatory flow at around transitional Reynolds numbers is considered for an idealized electronics system. To assess the accuracy of turbulence models, comparison is made with measurements. A stochastic procedure is used to recover instantaneous velocity time traces from predictions. This procedure enables more direct comparison with turbulence intensity measurements which have not been filtered to remove the oscillatory flow component. Normal wall distances, required in some turbulence models, are evaluated using a modified Poisson equation based technique. A range of zero, one and two equation turbulence models are tested, including zonal and a non-linear eddy viscosity models. The non-linear and zonal models showed potential for accuracy improvements.
Resumo:
In the face of increasing demand and limited emission reduction opportunities, the steel industry will have to look beyond its process emissions to bear its share of emission reduction targets. One option is to improve material efficiency - reducing the amount of metal required to meet services. In this context, the purpose of this paper is to explore why opportunities to improve material efficiency through upstream measures such as yield improvement and lightweighting might remain underexploited by industry. Established input-output techniques are applied to the GTAP 7 multi-regional input-output model to quantify the incentives for companies in key steel-using sectors (such as property developers and automotive companies) to seek opportunities to improve material efficiency in their upstream supply chains under different short-run carbon price scenarios. Because of the underlying assumptions, the incentives are interpreted as overestimates. The principal result of the paper is that these generous estimates of the incentives for material efficiency caused by a carbon price are offset by the disincentives to material efficiency caused by labour taxes. Reliance on a carbon price alone to deliver material efficiency would therefore be misguided and additional policy interventions to support material efficiency should be considered. © 2013 Elsevier B.V.
Resumo:
We report on the preparation conditions of YBa2Cu3O7 polycrystalline superconducting tapes by a sol-gel deposition technique. We present some discussion on the compatibility between the nature of the substrate, the use of a buffer layer, and the conditions used to prepare appropriate superconducting YBa2Cu3O7 materials. We report also on the microstructural characterizations performed in order to evaluate the crystallites size, degree of orientation and connectivity. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Widespread approaches to fabricate surfaces with robust micro- and nanostructured topographies have been stimulated by opportunities to enhance interface performance by combining physical and chemical effects. In particular, arrays of asymmetric surface features, such as arrays of grooves, inclined pillars, and helical protrusions, have been shown to impart unique anisotropy in properties including wetting, adhesion, thermal and/or electrical conductivity, optical activity, and capability to direct cell growth. These properties are of wide interest for applications including energy conversion, microelectronics, chemical and biological sensing, and bioengineering. However, fabrication of asymmetric surface features often pushes the limits of traditional etching and deposition techniques, making it challenging to produce the desired surfaces in a scalable and cost-effective manner. We review and classify approaches to fabricate arrays of asymmetric 2D and 3D surface features, in polymers, metals, and ceramics. Analytical and empirical relationships among geometries, materials, and surface properties are discussed, especially in the context of the applications mentioned above. Further, opportunities for new fabrication methods that combine lithography with principles of self-assembly are identified, aiming to establish design principles for fabrication of arbitrary 3D surface textures over large areas. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Two adaptive numerical modelling techniques have been applied to prediction of fatigue thresholds in Ni-base superalloys. A Bayesian neural network and a neurofuzzy network have been compared, both of which have the ability to automatically adjust the network's complexity to the current dataset. In both cases, despite inevitable data restrictions, threshold values have been modelled with some degree of success. However, it is argued in this paper that the neurofuzzy modelling approach offers real benefits over the use of a classical neural network as the mathematical complexity of the relationships can be restricted to allow for the paucity of data, and the linguistic fuzzy rules produced allow assessment of the model without extensive interrogation and examination using a hypothetical dataset. The additive neurofuzzy network structure means that redundant inputs can be excluded from the model and simple sub-networks produced which represent global output trends. Both of these aspects are important for final verification and validation of the information extracted from the numerical data. In some situations neurofuzzy networks may require less data to produce a stable solution, and may be easier to verify in the light of existing physical understanding because of the production of transparent linguistic rules. © 1999 Elsevier Science S.A.
Resumo:
This paper demonstrates the application of laser Doppler velocimetry (LDV) and particle image velocimetry (PIV) techniques to a particle-laden reacting flow of pulverized coal. A laboratory-scale open-type annular burner is utilized to generate velocity profiles of coal particles and micrometric alumina particles. Pair-wise two-component LDV measurements and high-speed stereo PIV measurements provide three-dimensional velocity components of the flow field. A detailed comparison of velocities for alumina and coal particle seeding revealed differences attributed to the wide size distribution of coal particles. In addition, the non-spherical shape and high flame luminosity associated with coal particle combustion introduces noise to the Mie scatter images. The comparison of mean and RMS velocities measured by LDV and PIV techniques showed that PIV measurements are affected by the wide size distribution of coal particles, whereas LDV measurements become biased toward the velocity of small particles, as signals from large particles are rejected. This small-particle bias is also reflected in the spectral characteristics for both techniques, which are in good agreement within the range of frequencies accessible. PIV measurements showed an expected lack of response of large coal particles to the turbulence fluctuations. The overall good agreement between LDV and PIV measurements demonstrates the applicability of the high-speed PIV technique to a particle-laden, high luminosity coal flame while highlighting some of its limitations. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
The adoption of inclusive design approach into design practice is compatible to the needs of an ageing society. However, tools and methods that promote inclusivity during new product development are scarcely used in industry. This paper is part of a research project that investigates ways to accommodate inclusive design into the design process in industrial context. The present paper is based on the finds from the observations and interviews with industrial designers and interviews with stakeholders. The outcomes from the study supported a better understanding of the client-designer dynamic as well as the stages in the design process where information related to inclusive design could be introduced. The findings were essential to inspire the development of an inclusive design interactive technique to be used by clients and designers. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Nanoindentation is ideal for the characterization of inhomogeneous biological materials. However, the use of nanoindentation techniques in biological systems is associated with some distinctively different techniques and challenges. For example, engineering materials used in the microelectronics industry (e.g. ceramics and metals) for which the technique was developed, are relatively stiff and exhibit time-independent mechanical responses. Biological materials, on the other hand, exhibit time-dependent behavior, and can span a range of stiffness regimes from moduli of Pa to GPa - eight to nine orders of magnitude. As such, there are differences in the selection of instrumentation, tip geometry, and data analysis in comparison with the "black box" nanoindentation techniques as sold by commercial manufacturers. The use of scanning probe equipment (atomic force miscroscopy) is also common for small-scale indentation of soft materials in biology. The book is broadly divided into two parts. The first part presents the "basic science" of nanoindentation including the background of contact mechanics underlying indentation technique, and the instrumentation used to gather mechanical data. Both the mechanics background and the instrumentation overview provide perspectives that are optimized for biological applications, including discussions on hydrated materials and adaptations for low-stiffness materials. The second part of the book covers the applications of nanoindentation technique in biological materials. Included in the coverage are mineralized and nonmineralized tissues, wood and plant tissues, tissue-engineering substitute materials, cells and membranes, and cutting-edge applications at molecular level including the use of functionalized tips to probe specific molecular interactions (e.g. the ligand-receptor binding). The book concludes with a concise summary and an insightful forecast of the future highlighting the current challenges. © 2011 by Pan Stanford Publishing Pte. Ltd. All rights reserved.
Resumo:
A discrete element model (DEM) combined with computational fluid dynamics (CFD) was developed to model particle and fluid behaviour in 3D cylindrical fluidized beds. Novel techniques were developed to (1) keep fluid cells, defined in cylindrical coordinates, at a constant volume in order to ensure the conditions for validity of the volume-averaged fluid equations were satisfied and (2) smoothly and accurately measure voidage in arbitrarily shaped fluid cells. The new technique for calculating voidage was more stable than traditional techniques, also examined in the paper, whilst remaining computationally-effective. The model was validated by quantitative comparison with experimental results from the magnetic resonance imaging of a fluidised bed analysed to give time-averaged particle velocities. Comparisons were also made between theoretical determinations of slug rise velocity in a tall bed. It was concluded that the DEM-CFD model is able to investigate aspects of the underlying physics of fluidisation not readily investigated by experiment. © 2014 The Authors.
Resumo:
The authors present numerical simulations of ultrashort pulse generation by a technique of linear spectral broadening in phase modulators and compression in dispersion compensating fibre, followed by a further stage of soliton compression in dispersion shifted fibre. This laser system is predicted to generate pulses of 140 fs duration with a peak power of 1.5 kW over a wide, user selectable repetition rate range while maintaining consistent characteristics of stability and pulse quality. The use of fibre compressors and commercially available modulators is expected to make the system setup compact and cost-effective. © The Institution of Engineering and Technology 2014.
Resumo:
A vibration energy harvester designed to access parametric resonance can potentially outperform the conventional direct resonant approach in terms of power output achievable given the same drive acceleration. Although linear damping does not limit the resonant growth of parametric resonance, a damping dependent initiation threshold amplitude exists and limits its onset. Design approaches have been explored in this paper to passively overcome this limitation in order to practically realize and exploit the potential advantages. Two distinct design routes have been explored, namely an intrinsically lower threshold through a pendulum-lever configuration and amplification of base excitation fed into the parametric resonator through a cantilever-initial-spring configuration. Experimental results of the parametric resonant harvesters with these additional enabling designs demonstrated an initiation threshold up to an order of magnitude lower than otherwise, while attaining a much higher power peak than direct resonance. © 2014 IOP Publishing Ltd.