202 resultados para BEAM-FOIL
Resumo:
Hot-pressed laminates with a [0/90]48 lay-up, consisting of 83% by volume of ultra high molecular-weight polyethylene (UHMWPE) fibres, and 17% by volume of polyurethane (PU) matrix, were cut into cantilever beams and subjected to transverse end-loading. The collapse mechanisms were observed both visually and by X-ray scans. Short beams deform elastically and collapse plastically in longitudinal shear, with a shear strength comparable to that observed in double notch, interlaminar shear tests. In contrast, long cantilever beams deform in bending and collapse via a plastic hinge at the built-in end of the beam. The plastic hinge is formed by two wedge-shaped microbuckle zones that grow in size and in intensity with increasing hinge rotation. This new mode of microbuckling under macroscopic bending involves both elastic bending and shearing of the plies, and plastic shear of the interface between each ply. The double-wedge pattern contrasts with the more usual parallel-sided plastic microbuckle that occurs in uniaxial compression. Finite element simulations and analytical models give additional insight into the dominant material and geometric parameters that dictate the collapse response of the UHMWPE composite beam in bending. Detailed comparisons between the observed and predicted collapse responses are used in order to construct a constitutive model for laminated UHMWPE composites. © 2013 Elsevier Ltd.
Resumo:
We report an electron-beam based method for the nanoscale patterning of the poly(ethylene oxide)/LiClO4 polymer electrolyte. We use the patterned polymer electrolyte as a high capacitance gate dielectric in single nanowire transistors and obtain subthreshold swings comparable to conventional metal/oxide wrap-gated nanowire transistors. Patterning eliminates gate/contact overlap, which reduces parasitic effects and enables multiple, independently controllable gates. The method's simplicity broadens the scope for using polymer electrolyte gating in studies of nanowires and other nanoscale devices. © 2013 American Chemical Society.
Resumo:
Classic flutter analysis models an aerofoil as a two degree-of-freedom rigid body supported by linear and torsional springs, which represent the bending and torsional stiffness of the aerofoil section. In this classic flutter model, no energy transfer or dissipation can occur in the span-wise direction of the aerofoil section. However, as the aspect ratio of an aerofoil section increases, this span-wise energy transfer - in the form of travelling waves - becomes important to the overall system dynamics. This paper extends the classic flutter model to include travelling waves in the span-wise direction. Namely, wave dispersion and power flow analysis of an infinite, aerofoil-shaped beam, subject to bending, torsion, tension and a constant wind excitation, is used to investigate the overall system stability. Examples of potential applications for these high aspect ratio aerofoil sections include high-altitude balloon tethers, towed cables, offshore risers and mooring lines.
Free space adaptive optical interconnect, using a ferroelectric liquid crystal SLM for beam steering
Resumo:
A free-space, board-to-board, adaptive optical interconnect demonstrator has been developed. Binary phase gratings displayed on a Ferroelectric Liquid Crystal Spatial Light Modulator are used to maintain data transfer at 1.25Gbps, given varying optical misalignment.© 2005 Optical Society of America.
Resumo:
This paper explores a design strategy of hopping robots, which makes use of free vibration of an elastic curved beam. In this strategy, the leg structure consists of a specifically shaped elastic curved beam and a small rotating mass that induces free vibration of the entire robot body. Although we expect to improve energy efficiency of locomotion by exploiting the mechanical dynamics, it is not trivial to take advantage of the coupled dynamics between actuation and mechanical structures for the purpose of locomotion. From this perspective, this paper explains the basic design principles through modeling, simulation, and experiments of a minimalistic hopping robot platform. More specifically, we show how to design elastic curved beams for stable hopping locomotion and the control method by using unconventional actuation. In addition, we also analyze the proposed design strategy in terms of energy efficiency and discuss how it can be applied to the other forms of legged robot locomotion. © 1996-2012 IEEE.
Resumo:
This study presents a novel approach to the design of low-cost and energy-efficient hopping robots, which makes use of free vibration of an elastic curved beam. We found that a hopping robot could benefit from an elastic curved beam in many ways such as low manufacturing cost, light body weight and small energy dissipation in mechanical interactions. A challenging problem of this design strategy, however, lies in harnessing the mechanical dynamics of free vibration in the elastic curved beam: because the free vibration is the outcome of coupled mechanical dynamics between actuation and mechanical structures, it is not trivial to systematically design mechanical structures and control architectures for stable locomotion. From this perspective, this paper investigates a case study of simple hopping robot to identify the design principles of mechanics and control. We developed a hopping robot consisting of an elastic curved beam and a small rotating mass, which was then modeled and analyzed in simulation. The experimental results show that the robot is capable of exhibiting stable hopping gait patterns by using a small actuation with no sensory feedback owing to the intrinsic stability of coupled mechanical dynamics. Furthermore, an additional analysis shows that, by exploiting free vibration of the elastic curved beam, cost of transport of the proposed hopping locomotion can be in the same rage of animals' locomotion including human running. © 2011 IEEE.