233 resultados para Angular measurements


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes the application of the light-attenuation technique as a tool for measuring dilution occurring in buoyancy-driven flows. Whilst this technique offers the experimental fluid dynamicist the ability to make rapid synoptic buoyancy measurements non-intrusively, its successful application requires careful selection of chemical dye, dye concentration, illumination and optics. After establishing the advantages offered by methylene blue as a dyeing agent, we assess the accuracy of buoyancy measurements made using this technique compared with direct measurements made with density meters. Density measurements obtained using light-attenuation differ from those obtained using the density meter by typically less than 3%. It is hoped that this article will provide useful advice with regards to its implementation in the field of buoyancy-driven flows. © 2011 Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computer simulation results are reported for a realistic polarizable potential model of water in the supercooled region. Three states, corresponding to the low density amorphous ice, high density amorphous ice, and very high density amorphous ice phases are chosen for the analyses. These states are located close to the liquid-liquid coexistence lines already shown to exist for the considered model. Thermodynamic and structural quantities are calculated, in order to characterize the properties of the three phases. The results point out the increasing relevance of the interstitial neighbors, which clearly appear in going from the low to the very high density amorphous phases. The interstitial neighbors are found to be, at the same time, also distant neighbors along the hydrogen bonded network of the molecules. The role of these interstitial neighbors has been discussed in connection with the interpretation of recent neutron scattering measurements. The structural properties of the systems are characterized by looking at the angular distribution of neighboring molecules, volume and face area distribution of the Voronoi polyhedra, and order parameters. The cumulative analysis of all the corresponding results confirms the assumption that a close similarity between the structural arrangement of molecules in the three explored amorphous phases and that of the ice polymorphs I(h), III, and VI exists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements and predictions are made of a short-cowl coflowing jet with a bypass ratio of 8:1. The Reynolds number is 300,000, and the inlet Mach numbers are representative of aeroengine conditions. The low Reynolds number of the measurements makes the case well suited to the assessment of large-eddy-simulation-related strategies. The nozzle concentricity is carefully controlled to deal with the emerging metastability issues of jets with coflow. Measurements of mean quantities and turbulence statistics are made using both laser Doppler anemometry and particle image velocimetry. The simulations are completed on 6× 106, 12× 106, and 50 × 106 cell meshes. To overcome near-wall modeling problems, a hybrid large-eddy-simulation-Reynolds-averaged-Navier-Stokesrelated method is used. The near-wall Reynolds-averaged-Navier-Stokes layer is helpful in preventing nonphysical separation from the nozzle wall.Copyright © 2010 by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements and predictions are made of a short cowl co-flowing jet with a bypass ratio of 8:1. The Reynolds number for computations and measurements are matched at 300,000 and the Mach numbers representative of realistic jet conditions with core and co flow velocities of 240m/s and 216m/s respectively. The low Reynolds number of the measurements makes the case well suited to the assessment of large eddy resolving computational strategies. Also, the nozzle concentricity was carefully controlled to deal with the emerging metastability issues of jets with coflow. Measurements of mean quantities and turbulence statistics are made using both two dimensional coincident LDA and PIV systems. The computational simulations are completed on a modest 12×106 mesh. The simulation is now being run on a 50×106 mesh using hybrid RANSNLES (Numerical Large Eddy Simulation). Close to the nozzle wall a k-l RANS model is used. For an axisymmetric jet, comparison is made between simulations which use NLES, RANSNLES and also a simple imposed velocity profile where the nozzle is not modeled. The use of a near wall RANS model is shown to be beneficial. When compared with the measurements the NLES results are encouraging. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper discusses measurements of heat transfer obtained from the inside surface of the peripheral shroud. The experiments were carried out on a rotating cavity, comprising two 0.985-m-dia disks, separated by an axial gap of 0.065 m and bounded at the circumference by a carbon fiber shroud. Tests were conducted with a heated shroud and either unheated or heated disks. When heated, the disks had the same temperature level and surface temperature distribution. Two different temperature distributions were tested; the surface temperature either increased, or decreased with radius. The effects of disk, shroud, and air temperature levels were also studied. Tests were carried out for the range of axial throughflow rates and speeds: 0.0025 ≤ m ≤ 0.2 kg/s and 12.5 ≤ Ω ≤ 125 rad/s, respectively. Measurements were also made of the temperature of the air inside the cavity. The shroud Nusselt numbers are found to depend on a Grashof number, which is defined using the centripetal acceleration. Providing the correct reference temperature is used, the measured Nusselt numbers also show similarity to those predicted by an established correlation for a horizontal plate in air. The heat transfer from the shroud is only weakly affected by the disk surface temperature distribution and temperature level. The heat transfer from the shroud appears to be affected by the Rossby number. A significant enhancement to the rotationally induced free convection occurs in the regions 2 ≤ Ro ≤ 4 and Ro ≥ 20. The first of these corresponds to a region where vortex breakdown has been observed. In the second region, the Rossby number may be sufficiently large for the central throughflow to affect the shroud heat transfer directly. Heating the shroud does not appear to affect the heat transfer from the disks significantly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we investigated non-ideal characteristics of a diamond Schottky barrier diode with Molybdenum (Mo) Schottky metal fabricated by Microwave Plasma Chemical Vapour Deposition (MPCVD) technique. Extraction from forward bias I-V and reverse bias C- 2-V measurements yields ideality factor of 1.3, Schottky barrier height of 1.872 eV, and on-resistance of 32.63 mö·cm2. The deviation of extracted Schottky barrier height from an ideal value of 2.24 eV (considering Mo workfunction of 4.53 eV) indicates Fermi level pinning at the interface. We attributed such non-ideal behavior to the existence of thin interfacial layer and interface states between metal and diamond which forms Metal-Interfacial layer-Semiconductor (MIS) structure. Oxygen surface treatment during fabrication process might have induced them. From forward bias C-V characteristics, the minimum thickness of the interfacial layer is approximately 0.248 nm. Energy distribution profile of the interface state density is then evaluated from the forward bias I-V characteristics based on the MIS model. The interface state density is found to be uniformly distributed with values around 1013 eV - 1·cm- 2. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design and fabrication of a novel 2-scale topography dry electrode using macro and micro needles is presented. The macro needles enable biopotential measurements on hairy skin, the function of the micro needles is to decrease the electrode impedance even further by penetrating the outer skin layer. Also, a fast and reliable impedance characterization protocol is described. Based on this impedance measurement protocol, a comparison study is made between our dry electrode, 3 other commercial dry electrodes and a standard wet gel electrode. Promising results are already obtained with our electrodes which do not have skin piercing micro needles. For the proposed electrodes, three different conductive coatings (Ag/AgCl/Au) are compared. AgCl is found to be slightly better than Ag as coating material, while our Au coated electrodes have the highest impedance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluids with a controllable viscosity gained a lot of interest throughout the last years. One of the advantages of these fluids is that they allow to fabricate hydraulic components such as valves with a very simple structure. Although the properties of these fluids are very interesting for microsystems, their applicability is limited at microscale since the particles suspended in these fluids tend to obstruct microchannels. This paper investigates the applicability of electrorheologic Liquid Crystals (LCs) in microsystems. Since LC's do not contain suspended particles, they show intrinsic advantages over classic rheologic active fluids in microapplications. As a matter of fact, LC molecules are usually only a few nanometers long, and therefore, they can probably be used in systems with sub-micrometer channels or other nanoscale applications. This paper presents a novel model describing the electrorheologic behavior of these nanoscale molecules. This model is used to simulate a microvalve controlled by LC's. By comparing measurements and simulations performed on this microvalve it is possible to prove that the model developed in this paper is very accurate. In addition, these simulations and measurements revealed other remarkable properties of LC's, such as high bandwidths and high changes in flow resistance. © 2006 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluids with controllable flow properties have gained considerable interest in the past few years. Some of these fluids such as magnetorheologic fluids are now widely applied to active dampers and valves. Although these fluids show promising properties for microsystems, their applicability is limited to the microscale since particles suspended in these fluids tend to obstruct microchannels. This paper investigates the applicability of electrorheologic liquid crystals (LCs) in microsystems. Since LCs do not contain suspended particles, they show intrinsic advantages over classic rheologic fluids in micro-applications. This paper presents a novel physical model that describes the static and the dynamic behaviour of electrorheologic LCs. The developed model is validated by comparing simulations and measurements performed on a rectangular microchannel. This assessment shows that the model presented in this paper is able to simulate both static and dynamic properties accurately. Therefore, this model is useful for the understanding, simulation and optimization of devices using LCs as electrorheological fluid. In addition, measurements performed in this paper reveal remarkable properties of LCs, such as high bandwidths and high changes in flow resistance. © 2006 IOP Publishing Ltd.