338 resultados para ultra micro indentation
Resumo:
A Nanoelectromechanical (NEM) device developed for dynamic random access memory (DRAM) is reported. A vertical nanotube structure is employed to form the electromechanical switch and capacitor structure. The mechanical movement of the nanotube defines 'On' and 'OFF' states and the electrical signals which result lead to charge storage in a vertical capacitor structure as in a traditional DRAM. The vertical structure contributes greatly to a decrease in cell dimension. The main concept of the NEM switch and capacitor can be applied to other memory devices as well. © 2005 IEEE.
Resumo:
We present a novel optical routing scheme scalable to greater than 50×50 channels with a potential aggregate bit-rate of 1Tbps. The proof-of-principle experiment demonstrates the feasibility of the router with a de-multiplexed Q-factor of 6.35. © 2004 Optical Society of America.
Resumo:
Bone as most of living tissues is able, during its entire lifetime, to adapt its internal microstructure and subsequently its associated mechanical properties to its specific mechanical and physiological environment in a process commonly known as bone remodelling. Bone is therefore continuously renewed and micro-damage, accumulated by fatigue or creep, is removed minimizing the risk of fracture. Nevertheless, bone is not always able to repair itself completely. Actually, if bone repairing function is slower than micro-damage accumulation, a type of bone fracture, usually known as "stress fracture", can finally evolve. In this paper, we propose a bone remodelling continuous model able to simulate micro-damage growth and repair in a coupled way and able therefore to predict the occurrence of "stress fractures". The biological bone remodelling process is modelled in terms of equations that describe the activity of basic multicellular units. The predicted results show a good correspondence with experimental and clinical data. For example, in disuse, bone porosity increases until an equilibrium situation is achieved. In overloading, bone porosity decreases unless the damage rate is so high that causes resorption or "stress fracture".
Resumo:
Hydrogels are promising materials for bioengineering applications, and are good model materials for the study of hydrated biological tissues. As these materials often have a structural function, the measurement of their mechanical properties is of fundamental importance. In the present study gelatin gels reinforced with ceramic microspheres are produced and their poroviscoelastic response in spherical indentation is studied. The constitutive responses of unreinforced gels are determined using inverse finite element modeling in combination with analytical estimates of material parameters. The behavior of composite gels is assessed by both analytical and numerical homogenization. The results of the identification of the constitutive parameters of unreinforced gels show that it is possible to obtain representative poroviscoelastic parameters by spherical indentation without the need for additional mechanical tests. The agreement between experimental results on composite gelatin and the predictions from homogenization modeling show that the adopted modeling tools are capable of providing estimates of the poroviscoelastic response of particle-reinforced hydrogels.