256 resultados para nitrogen deposition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of metal coating technologies drives the continuous improvement of metal deposition techniques for application in a wide range of industrial sectors. This work presents the foundations of a new process technology for the deposition of titanium coatings on steel tube substrates using supersonic powder streams and impact site laser heating, known as Supersonic Laser Deposition (SLD). Metallic deposits are obtained under appropriate impact conditions without the need for exceeding the melting point of the deposited material or substrate leading to improved coating quality. Details of the experimental approach are presented along with the general characteristics of the titanium coating produced using this novel coatings method. © 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc oxide (ZnO) thin films were deposited at high rates ( > 50 nm min-1) using a unique technique known as high target utilisation sputtering (HiTUS). The films obtained possess good crystallographic orientation, low surface roughness, very low stress and excellent piezoelectric properties. We have utilised the films to develop highly sensitive biosensors based on thickness longitudinal mode (TLM) thin film bulk acoustic resonators (FBARs). The FBARs have the fundamental TLM at a frequency near 1.5 GHz and quality factor Q higher than 1,000, which is one of the largest values ever reported for ZnO-based FBARs. Bovine Serum Albumin (BSA) solutions with different concentrations were placed on the top of different sets of identical FBARs and their responses to mass-loading from physically adsorbed protein coatings were investigated. These resonators demonstrated a high sensitivity and thus have a great potential as gravimetric sensors for biomedical applications. © 2011 Inderscience Enterprises Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

YBCO thin films are currently used in several HTS-based electronics applications. The performance of devices, which may include microwave passive components (filters, resonators), grain boundary junctions or spintronic multilayer structures, is determined by film quality, which in turn depends on the deposition technology used and growth parameters. We report on results from nonintrusive Optical Emission Spectroscopy of the plasma during YBCO thin film deposition in a high-pressure on-axis sputtering system under different conditions, including small trace gas additions to the sputtering gas. We correlate these results with the compositional and structural changes which affect the DC and microwave properties of YBCO films. Film morphology, composition, structure and in- and out-of-plane orientation were assessed; T, and microwave surface resistance measurements were made using inductive and resonator techniques. Comparison was made with films sputtered in an off-axis 2-opposing magnetron system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated single grain boundaries (GBs) isolated in coated conductors produced by Metal-Organic Deposition (MOD). When a magnetic field is swept in the film plane, an angle-dependent crossover from boundary to grain limited critical current density Jc is found. In the force-free orientation, even at fields as high as 8 T, the GBs still limit Jc. We deduce that this effect is a direct consequence of GB meandering. We have employed these single GB results to explain the dependence of Jc of polycrystalline tracks on their width: in-plane measurements become flatter as the tracks are narrowed down. This result is consistent with the stronger GB limitation at field configurations close to force-free found from the isolated boundaries. Our study shows that for certain geometries even at high fields the effect of GBs cannot be neglected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As these results indicate, photo-CVD coating is a robust process that allows for the creation of core-shell nanoparticles. In the present work we demonstrated that photo-CVD can effectively coat Fe2O3 particles with silica for purposes of biological applications. TDMA results combined with TEM images indicate that all particles are effectively coated and that particle coating thicknesses can be tuned to desired thickness depending on the application. In addition, the ability to vary coating properties and to coat high concentrations of particles makes this technique of interest for industrial production where uniform properties are needed for large quantities of particles [2]. Copyright © 2010 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exponential increase of industrial demand in the past two decades has led scientists to the development of alternative technologies for the fast manufacturing of engineering components, aside from standard and time consuming techniques such as casting or forging.Cold Spray (CS) is a newly developed manufacturing technique, based upon the deposition of metal powder on a substrate due to high energy particle impacts. In this process, the powder is accelerated up to considerable speed in a converging-diverging nozzle, typically using air, nitrogen or helium as a carrier gas. Recent developments have demonstrated significant process capabilities, from the building of mold-free 3D shapes made of various metals, to low porosity and corrosion resistant titanium coatings.In CS, the particle stream characteristics during the acceleration process are important in relation to the final geometry of the coating. Experimental studies have shown the tendency of particles to spread over the nozzle acceleration channel, resulting in a wide exit stream and in the difficulty of producing narrow tracks.This paper presents an investigation on the powder stream characteristics in CS supersonic nozzles. The powder insertion location was varied within the carrier gas flow, along with the geometry of the powder injector, in order to identify their relation with particle trajectories. Computational Fluid Dynamics (CFD) results by Fluent v6.3.26 are presented, along with experimental observations. Different configurations were tested and modeled, giving deposited track geometries of copper and tin ranging from 1. mm to 8. mm in width on metal and polymer substrates. © 2011 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the emergence of transparent electronics, there has been considerable advancement in n-type transparent semiconducting oxide (TSO) materials, such as ZnO, InGaZnO, and InSnO. Comparatively, the availability of p-type TSO materials is more scarce and the available materials are less mature. The development of p-type semiconductors is one of the key technologies needed to push transparent electronics and systems to the next frontier, particularly for implementing p-n junctions for solar cells and p-type transistors for complementary logic/circuits applications. Cuprous oxide (Cu2O) is one of the most promising candidates for p-type TSO materials. This paper reports the deposition of Cu2O thin films without substrate heating using a high deposition rate reactive sputtering technique, called high target utilisation sputtering (HiTUS). This technique allows independent control of the remote plasma density and the ion energy, thus providing finer control of the film properties and microstructure as well as reducing film stress. The effect of deposition parameters, including oxygen flow rate, plasma power and target power, on the properties of Cu2O films are reported. It is known from previously published work that the formation of pure Cu2O film is often difficult, due to the more ready formation or co-formation of cupric oxide (CuO). From our investigation, we established two key concurrent criteria needed for attaining Cu2O thin films (as opposed to CuO or mixed phase CuO/Cu2O films). First, the oxygen flow rate must be kept low to avoid over-oxidation of Cu2O to CuO and to ensure a non-oxidised/non-poisoned metallic copper target in the reactive sputtering environment. Secondly, the energy of the sputtered copper species must be kept low as higher reaction energy tends to favour the formation of CuO. The unique design of the HiTUS system enables the provision of a high density of low energy sputtered copper radicals/ions, and when combined with a controlled amount of oxygen, can produce good quality p-type transparent Cu2O films with electrical resistivity ranging from 102 to 104 Ω-cm, hole mobility of 1-10 cm2/V-s, and optical band-gap of 2.0-2.6 eV. These material properties make this low temperature deposited HiTUS Cu 2O film suitable for fabrication of p-type metal oxide thin film transistors. Furthermore, the capability to deposit Cu2O films with low film stress at low temperatures on plastic substrates renders this approach favourable for fabrication of flexible p-n junction solar cells. © 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural, optical, electrical and physical properties of amorphous carbon deposited from the filtered plasma stream of a vacuum arc were investigated. The structure was determined by electron diffraction, neutron diffraction and energy loss spectroscopy and the tetrahedral coordination of the material was confirmed. The measurements gave a nearest neighbour distance of 1.53 Å, a bond angle of 110 and a coordination number of four. A model is proposed in which the compressive stress generated in the film by energetic ion impact produces pressure and temperature conditions lying well inside the region of the carbon phase diagram within which diamond is stable. The model is confirmed by measurements of stress and plasmon energy as a function of ion energy. The model also predicts the formation of sp2-rich materials on the surface owing to stress relaxation and this is confirmed by a study of the surface plasmon energy. Some nuclear magnetic resonance, infrared and optical properties are reported and the behaviour of diodes using tetrahedral amorphous carbon is discussed. © 1991.